Energy consumption in aluminium smelters

The basis for all modern primary aluminium smelting plants is the same: Aluminium oxide (Alumina) is dissolved in an electrolytic bath of molten cryolite (sodium aluminium fluoride) within a large carbon or graphite lined steel container known as a "pot". An electric current is passed through the electrolyte at low voltage, but very high current, typically 150,000 amperes. Molten aluminium is deposited at the bottom of the pot and is siphoned off periodically. A typical aluminium smelter consists of around 300 pots.

A basic focus in the Aluminium producing industry is the high energy consumption. Design and process improvements have progressively reduced energy consumption, but have also strengthened the demand for HF control in the flue gas filter and the exhaust gas to protect workers and ambient air quality.

Continuous monitoring of the HF concentration in aluminium smelters is a key issue for the optimization of the aluminium production process.

The in-situ measuring principle is best suited for this task because it provides the plant operator with measuring data in real-time for fast reaction.

The LDS 6 In-situ Laser Gas Analyzer offers best possible capabilities for this application. It can be installed directly at the filter and in the pot room and delivers fast and accurate HF concentration data. This Case Study presents details of this application.
Reduction of energy consumption requires HF monitoring

**Application tasks**

One basic focus in the Aluminium producing industry is the demand to reduce the required energy. Therefore, fluorne-containing auxiliary material (cryolite) is added to the electrolytic reduction of aluminium oxide. This leads to a reduction of the melting point, but as an unwanted drawback, HF-containing emissions are released.

Most of the HF-containing process gas is re-circulated within the process, but some is carried via ducts to filters where the HF is adsorbed and removed. Here the LDS 6 is an valuable instrument to optimize the HF filtering process and to control the remaining emissions.

**Optimization of the Filter Process**

To minimize the emissions of HF, the flue gases are cleaned in a so-called dry filter. These filters contain aluminium oxide particles, which are adsorbing the HF on their surface. Since the adsorption capabilities are limited, the filter material has to be removed from time to time. Figuring out the best point of time for the removal is crucial for the process optimization: No increased emissions due to exhausted filter absorption capabilities occur and no unnecessary filter refreshment has to be carried out. A quality control of the aluminium oxide helps to save costs: The logistic and maintenance efforts for keeping the filter efficient can be reduced significantly.

**Emission Control**

HF emissions are very problematic in terms of toxicity and are therefore subdued to numerous regulations. A continuous control of the emitted HF gas is necessary to ensure safety for the workers and the environment. In some cases, the monitoring of the HF emissions can also deliver information about the Al-production process itself.

**The analyzer LDS 6**

LDS 6 (fig. 1) is a diode laser-based in-situ gas analyzer for measuring specific gas components directly in a process gas stream.

LDS 6 consists of a central unit and up to three pairs of cross duct sensors in a transmitter / receiver configuration. The central unit is separated from the sensors by using fibre optics. Regardless how hostile the environment is, the analyzer can always be placed outside any hazardous areas. Measurements are carried out free of spectral interferences and in real-time enabling pro-activ control of dynamic processes.

Full network connectivity via ethernet allows remote maintenance.

**Key features** include

- In-situ principle, no gas sampling
- Three measuring points simultaneously
- Temperature up to 1500 °C
- Ex-version available (option)

LDS 6 is designed for fast and non-intrusive measurements in many industrial processes. Measuring components include:

- \( O_2/\text{temp.}, \text{NH}_3/\text{H}_2\text{O}, \text{HF}/\text{H}_2\text{O}, \text{HCl}/\text{H}_2\text{O}, \text{CO}/\text{CO}_2, \) low ppm \( \text{H}_2\text{O}, \ldots \)

*Fig. 1: LDS 6 In-situ laser gas analyzer*
Fast and reliable HF monitoring using the LDS 6

Application solution

Filter optimization
The LDS 6 is installed to measure the concentration of HF just before and after the filter (measuring spots 1 and 2). If a significant change in the ratio of HF in raw and filtered gas occurs, a change of filter material is indicated. Exchanges before time are avoided, exchange costs are reduced and filter efficiency is improved.

Emission control
LDS 6 is also capable of controlling the emissions in an open path measurement in the pot room (measuring spot 4). As path length, a measurement distance of more than hundred metres can be applied, which leads to truly representative HF concentration data in the ambient air.

The LDS 6 installation behind the filter (spot 2 and 3) also delivers data from the outlet duct which ensures that environmental standards are kept.

Up to three measurement spots described above can be controlled with only one LDS 6 central unit, which is connected to the three sensor pairs via fibre optic cables.

User benefits
The list of user benefits includes
- Continuous control of filter status
- Minimization of filter operational cost
- Accurate and fast environmental measurements
- Increase of HF safety at work
- Indirect control of the electrolyse process and indication of faulty process conditions

LDS 6 advantages for use in the Aluminium Industry
The design of LDS 6 makes it an ideally adjusted analytical tool for the aluminium industry.
- LDS 6 can measure HF in low and high concentration with high accuracy
- The sensors are designed to withstand very rough industrial environment
- LDS 6 sensors can be operated in strong DC magnetic fields.
- No gas sampling of toxic and aggressive HF is necessary, the measurements are performed in-situ
- Three measuring points are controlled simultaneously with only one instrument
- Highest reliability and lowest cost of ownership: no consumable parts, very low maintenance, no calibration necessary in the field
- All channels measure in real time for high dynamic process control
- No cross interferences due to highly specific single absorption line measurement and dynamic dust load compensation

Fig. 2: LDS 6 measuring points in an Aluminium smelter
Case Study

Measuring conditions

Typical measuring conditions for HF monitoring in the aluminium industry are given in table 1. If the ranges of typical values are kept unchanged, the application codes given in the last line of table 1 can be used for ordering the analyzer. In other cases, please use the given contact addresses for technical clarification.

User lists are available for different fields of application. Please contact the addresses below.

<table>
<thead>
<tr>
<th>HF measuring conditions (LDS 6) in the aluminium industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas to be measured</td>
</tr>
<tr>
<td>HF meas. range before filter</td>
</tr>
<tr>
<td>HF meas. range after filter</td>
</tr>
<tr>
<td>HF resolution before Filter</td>
</tr>
<tr>
<td>HF resolution after Filter</td>
</tr>
<tr>
<td>HF meas. range in the stack</td>
</tr>
<tr>
<td>HF resolution in the stack</td>
</tr>
<tr>
<td>Option</td>
</tr>
<tr>
<td>H₂O meas. range</td>
</tr>
<tr>
<td>H₂O resolution</td>
</tr>
<tr>
<td>Dust load before filter</td>
</tr>
<tr>
<td>Dust load after filter</td>
</tr>
<tr>
<td>Dust load in the stack</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Typical opt. path length</td>
</tr>
<tr>
<td>Pressure</td>
</tr>
<tr>
<td>Required response time</td>
</tr>
<tr>
<td>Recommended purging mode</td>
</tr>
<tr>
<td>Purging media</td>
</tr>
<tr>
<td>MLFB application code</td>
</tr>
</tbody>
</table>

Table 1: LDS 6 measuring conditions for HF measurement

If you have any questions, please contact your local sales representative or any of the contact addresses below:

Siemens AG
A&D PI 2 Process Analytics
Oestliche Rheinbrückenstr. 50
D-76187 Karlsruhe
Deutschland
Tel.: +49 721 595 4234
Fax: +49 721 595 6375
E-Mail: processanalytics@siemens.com
www.siemens.com/processanalytics

Siemens Applied Automation
7101 Hollister Road
Houston, TX 77040
USA
Tel.: +1 713 939 7400
Fax: +1 713 939 9050
E-Mail: saaisales@sea.siemens.com
www.sea.siemens.com

Siemens Pte. Limited
A&D PI 2 Regional Head Quarter
The Siemens Center
60 MacPherson Road
Singapore 348615
Tel.: +65 6490 8702
Fax: +65 6490 8703
E-Mail: splanalytics.sgp@siemens.com
www.siemens.com/processanalytics