MODEL 363 VIEWPAC™
MULTI-POINT
DIGITAL RECORDER

LINK INTERFACE
COMMUNICATIONS
TABLE OF CONTENTS

SECTION TITLE PAGE
---------- ------------------------------- -------------
1.0 LOCAL INSTRUMENT LINK (LIL) 1-1 ... 1-1
1.1 DEFINITION .. 1-1
1.1.1 Minimum System ... 1-1
1.1.2 Expanded System ... 1-1
1.1.3 Hi-Level Link Connection 1-1
1.2 LOCAL INSTRUMENT LINK (LIL) SPECIFICATIONS 1-1
1.3 DATA COMMUNICATIONS .. 1-1
1.3.1 Definition .. 1-1
1.3.2 Data Security ... 1-2
1.3.3 Word Size .. 1-2
2.0 LINK INTERFACE OPTION - MODEL 363 MULTI-POINT DIGITAL RECORDER 2-1
2.1 LINK INTERFACE COMMUNICATIONS ... 2-1
2.1.1 Channel Parameters 2-1
2.1.1.1 Global Data Parameters 2-1
2.1.2 PARAMETERS .. 2-5
2.1.2.1 Parameter Requests ... 2-5
2.1.2.2 Parameter Changes .. 2-5
2.2 STATUS WORDS .. 2-5
2.3 ERROR MESSAGES .. 2-48
2.3.1 Error Messages Over The Link 2-48

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
----------- ------------------------------- -------------
AS-1842-1 Local Instrument Link Minimum System ... 2-49
AS-1842-2 Local Instrument Link Expanded System .. 2-50
AS-1842-3 Local Instrument Link Hi-Level Data Link Tie-In 2-51

LIST OF TABLES

TABLE TITLE PAGE
---------- ------------------------------- -------------
2-1 Global Parameter Data Types ... 2-1
2-2 Link Parameter Overview ... 2-52

© 1995, Moore Products Co.

March 1995
1.3.2 Data Security

The equivalent of a CRC data check is used on all Local Instrument Link (LIL) data transmissions.

1.3.3 Word Size

All the Model 363 global parameters are 16 bits (2-byte) words. Normalized variables have a range of 80-$F80$ representing 0.00-100.00%. Some parameters will represent ASCII characters, some part of an IEEE 32-bit floating point number, others 16-bit integer. All parameters for the Model 363 Multi-Point Digital Recorder are given in this user's manual.
1.0 LOCAL INSTRUMENT LINK (LIL)

1.1 DEFINITION

The Local Instrument Link (LIL) is a communication network which connects a group of stations such as Model 352 Single Loop Digital Controllers (SLDC), Model 321 Expansion Satellite, Model 320 Independent Computer Interface (ICI), Model 324 Programmable Sequence Controllers (PSC), Model 383 Multi-Point Display Station (MDS), Model 351 Triple Loop Controller (TLC), Model 382 Logic and Sequence Controller (LSC), Model 363 Multi-Point Digital Recorder and any future devices for the purpose of inter-station communication.

1.1.1 Minimum System

A minimum system consists of at least (2) stations and up to a maximum of (32) stations having LINK interface cards which are connected together with a LINK cable (see dwg. AS-1842-1).

1.1.2 Expanded System

A Local Instrument Link (LIL) can be expanded up to a maximum of (62) stations by using a Model 321 Expansion Satellite (see dwg. AS-1842-2).

1.1.3 Hi-Level Link Connection

A Local Instrument Link (LIL) can also be connected to a MYCRO Hi-Level Data Link using a Model 321 Expansion Satellite (see dwg. AS-1842-3).

1.2 LOCAL INSTRUMENT LINK (LIL) SPECIFICATIONS

<table>
<thead>
<tr>
<th>Electrical</th>
<th>RS-422 Half-Duplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Enhanced HDLC</td>
</tr>
<tr>
<td>Speed</td>
<td>500K bits/second</td>
</tr>
<tr>
<td>Mode</td>
<td>Baseband</td>
</tr>
<tr>
<td>Access</td>
<td>Token Passing</td>
</tr>
<tr>
<td>Network</td>
<td>Bus</td>
</tr>
<tr>
<td>Stations</td>
<td>32 (max)</td>
</tr>
<tr>
<td>Medium</td>
<td>Twisted Pair</td>
</tr>
<tr>
<td>Distance</td>
<td>1500 feet - max (Belden #9182)</td>
</tr>
<tr>
<td></td>
<td>4000 feet - max (Belden #9860)</td>
</tr>
</tbody>
</table>

(refer to SD15492 for installation details)

1.3 DATA COMMUNICATIONS

1.3.1 Definition

Each station on the Local Instrument Link (LIL) can have up to a maximum of (256) data channels with each channel having a maximum of (256) data parameters. Stations will transmit all parameter 1 data values every 0.5 seconds to form the Global Data Base of the Local Instrument Link. A Local Instrument Link (LIL) can have up to 1600 global parameters. An expanded LIL can have a maximum of 1600 per side for a total of 3200 parameters. Each station's LINK interface supports commands to send parameter data as well as receiving changes to certain parameter values. The LINK interface also supports the uploading and downloading of the station's data base.
2.0 LINK INTERFACE OPTION - MODEL 363 MULTI-POINT DIGITAL RECORDER

2.1 LINK INTERFACE COMMUNICATIONS

This manual describes parameters available through the LINK interface option of the Model 363 and should be used with the appropriate Independent Computer Interface user's manual which includes complete information regarding commands and command structures. NOTE: only the COMMAND types and formats referenced in this manual should be used when communicating with the Model 363.

2.1.1 Channel Parameters

The Model 363 has 87 information channels. An overview of this data is given in Table 2-2.

2.1.1.1 Global Data Parameters

The LINK interface will transmit (broadcast) the following 16-bit data values every 0.5 seconds to form part of the Local Instrument Link global data.

Each Global Data Parameter (1st parameter of each channel) will be assigned a GLOBAL PARAMETER DATA TYPE. This will be used to identify the kind of input that a device might be looking at. This value will be accessed via a LIL parameter request to parameter 256 of the channel in which the Global Data Parameter resides.

Table 2 defines the current Global Parameter Data Types and their corresponding values.

<table>
<thead>
<tr>
<th>TABLE 2-1 GLOBAL PARAMETER DATA TYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA TYPE</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

PERCENT OF SCALE VARIABLES - 0 to $0FF$ (-3.3 to 103.1%)

NOTE: Certain PERCENT OF SCALE variables have the following information associated with them:
- 12 character TAG NAME (6 LIL parameters)
- 4 character ENGINEERING UNITS (2 LIL parameters)
- PROCESS HIGH (1 LIL parameter)
- PROCESS LOW (1 LIL parameter)
- DECIMAL POINT POSITION (1 LIL parameter)

This information is located in consecutive LIL parameters relative to the variable itself as described below:

100 CHANNEL VARIABLE - no tag name or scaling information
101 CHANNEL VARIABLE - Tag Name starts in the same channel, 4th parameter
102 PROCESS VARIABLE - Tag Name starts 3 channels down, 2nd parameter
103 SETPOINT VARIABLE - Tag Name starts 2 channels down, 2nd parameter
104 VALVE VARIABLE - Tag Name starts 1 channel down, 2nd parameter
LINK FULL RANGE VARIABLES - $0 to $FFFF

150 LINK FULL RANGE (-500 to 3500 deg F) - no tag name or scaling information
151 LINK FULL RANGE (-500 to 3500 deg F) - Tag Name starts in the same channel. 4th parameter

MODEL 363 SPECIFIC DATA TYPES (1200-1299)

1200 FUNCTION BLOCK STATUS
1210 TOTALIZER RESET STATUS #1 (points 1 to 16)
1211 TOTALIZER RESET STATUS #2 (points 17 to 24)
1220 PEN STATUS
1221 PEN CONFIGURATION STATUS

CHANNEL 01, PARAMETER 01 - STATION DATA SIZE ... Transmitted as $000F to $0057 indicating 15 to 87 active channels.

CHANNEL 02, PARAMETER 01 - STATION TYPE ... Transmitted as $000A indicating that this station is a Model 363.

CHANNEL 03, PARAMETER 01 - STATION STATUS ... STATUS WORD 02 as defined in para. 2.2

CHANNEL 04, PARAMETER 01 - STATION ERROR CODE ... (ref para. 2.4)

CHANNEL 05, PARAMETER 01 - FUNCTION BLOCK STATUS ... STATUS WORD 03 as defined in para. 2.2

CHANNEL 06, PARAMETER 01 - PEN STATUS ... STATUS WORD 06 as defined in para. 2.2

CHANNEL 07, PARAMETER 01 - TOTALIZER RESET STATUS #1 ... STATUS WORD 07 as defined in para. 2.2

CHANNEL 08, PARAMETER 01 - TOTALIZER RESET STATUS #2 ... STATUS WORD 09 as defined in para. 2.2

CHANNEL 09, PARAMETER 01 - PEN CONFIGURATION STATUS ... STATUS WORD 11 as defined in para. 2.2

CHANNEL 10, PARAMETER 01 - INPUT A ... The variable defined during configuration of FB098.

CHANNEL 11, PARAMETER 01 - INPUT A ALARM STATUS ... STATUS WORD 12 as defined in para. 2.2

CHANNEL 12, PARAMETER 01 - INPUT A STATUS ... STATUS WORD 13 as defined in para. 2.2

CHANNEL 13, PARAMETER 01 - INPUT B ... The variable defined during configuration of FB098.

CHANNEL 14, PARAMETER 01 - INPUT B ALARM STATUS ... STATUS WORD 14 as defined in para. 2.2

CHANNEL 15, PARAMETER 01 - INPUT B STATUS ... STATUS WORD 15 as defined in para. 2.2

CHANNEL 16, PARAMETER 01 - POINT #1 ... The variable defined during configuration of FB001.

CHANNEL 17, PARAMETER 01 - POINT #1 ALARM STATUS ... STATUS WORD 16 as defined in para. 2.2

CHANNEL 18, PARAMETER 01 - POINT #1 STATUS ... STATUS WORD 17 as defined in para. 2.2

CHANNEL 19, PARAMETER 01 - POINT #2 ... The variable defined during configuration of FB002.

CHANNEL 20, PARAMETER 01 - POINT #2 ALARM STATUS ... STATUS WORD 18 as defined in para. 2.2

CHANNEL 21, PARAMETER 01 - POINT #2 STATUS ... STATUS WORD 19 as defined in para. 2.2

CHANNEL 22, PARAMETER 01 - POINT #3 ... The variable defined during configuration of FB003.

CHANNEL 23, PARAMETER 01 - POINT #3 ALARM STATUS ... STATUS WORD 20 as defined in para. 2.2

CHANNEL 24, PARAMETER 01 - POINT #3 STATUS ... STATUS WORD 21 as defined in para. 2.2

March 1995
CHANNEL 25, PARAMETER 01 - POINT #4 ... The variable defined during configuration of FB004.

CHANNEL 26, PARAMETER 01 - POINT #4 ALARM STATUS ... STATUS WORD 22 as defined in para. 2.2

CHANNEL 27, PARAMETER 01 - POINT #4 STATUS ... STATUS WORD 23 as defined in para. 2.2

CHANNEL 28, PARAMETER 01 - POINT #5 ... The variable defined during configuration of FB005.

CHANNEL 29, PARAMETER 01 - POINT #5 ALARM STATUS ... STATUS WORD 24 as defined in para. 2.2

CHANNEL 30, PARAMETER 01 - POINT #5 STATUS ... STATUS WORD 25 as defined in para. 2.2

CHANNEL 31, PARAMETER 01 - POINT #6 ... The variable defined during configuration of FB006.

CHANNEL 32, PARAMETER 01 - POINT #6 ALARM STATUS ... STATUS WORD 26 as defined in para. 2.2

CHANNEL 33, PARAMETER 01 - POINT #6 STATUS ... STATUS WORD 27 as defined in para. 2.2

CHANNEL 34, PARAMETER 01 - POINT #7 ... The variable defined during configuration of FB007.

CHANNEL 35, PARAMETER 01 - POINT #7 ALARM STATUS ... STATUS WORD 28 as defined in para. 2.2

CHANNEL 36, PARAMETER 01 - POINT #7 STATUS ... STATUS WORD 29 as defined in para. 2.2

CHANNEL 37, PARAMETER 01 - POINT #8 ... The variable defined during configuration of FB008.

CHANNEL 38, PARAMETER 01 - POINT #8 ALARM STATUS ... STATUS WORD 30 as defined in para. 2.2

CHANNEL 39, PARAMETER 01 - POINT #8 STATUS ... STATUS WORD 31 as defined in para. 2.2

CHANNEL 40, PARAMETER 01 - POINT #9 ... The variable defined during configuration of FB009.

CHANNEL 41, PARAMETER 01 - POINT #9 ALARM STATUS ... STATUS WORD 32 as defined in para. 2.2

CHANNEL 42, PARAMETER 01 - POINT #9 STATUS ... STATUS WORD 33 as defined in para. 2.2

CHANNEL 43, PARAMETER 01 - POINT #10 ... The variable defined during configuration of FB010.

CHANNEL 44, PARAMETER 01 - POINT #10 ALARM STATUS ... STATUS WORD 34 as defined in para. 2.2

CHANNEL 45, PARAMETER 01 - POINT #10 STATUS ... STATUS WORD 35 as defined in para. 2.2

CHANNEL 46, PARAMETER 01 - POINT #11 ... The variable defined during configuration of FB011.

CHANNEL 47, PARAMETER 01 - POINT #11 ALARM STATUS ... STATUS WORD 36 as defined in para. 2.2

CHANNEL 48, PARAMETER 01 - POINT #11 STATUS ... STATUS WORD 37 as defined in para. 2.2

CHANNEL 49, PARAMETER 01 - POINT #12 ... The variable defined during configuration of FB012.

CHANNEL 50, PARAMETER 01 - POINT #12 ALARM STATUS ... STATUS WORD 38 as defined in para. 2.2

CHANNEL 51, PARAMETER 01 - POINT #12 STATUS ... STATUS WORD 39 as defined in para. 2.2

CHANNEL 52, PARAMETER 01 - POINT #13 ... The variable defined during configuration of FB013.

CHANNEL 53, PARAMETER 01 - POINT #13 ALARM STATUS ... STATUS WORD 40 as defined in para. 2.2

CHANNEL 54, PARAMETER 01 - POINT #13 STATUS ... STATUS WORD 41 as defined in para. 2.2

March 1995
LOCAL INSTRUMENT LINK COMMUNICATIONS

CHANNEL 55, PARAMETER 01 - POINT #14 ... The variable defined during configuration of FB014.
CHANNEL 56, PARAMETER 01 - POINT #14 ALARM STATUS ... STATUS WORD 42 as defined in para. 2.2
CHANNEL 57, PARAMETER 01 - POINT #14 STATUS ... STATUS WORD 43 as defined in para. 2.2
CHANNEL 58, PARAMETER 01 - POINT #15 ... The variable defined during configuration of FB015.
CHANNEL 59, PARAMETER 01 - POINT #15 ALARM STATUS ... STATUS WORD 44 as defined in para. 2.2
CHANNEL 60, PARAMETER 01 - POINT #15 STATUS ... STATUS WORD 45 as defined in para. 2.2
CHANNEL 61, PARAMETER 01 - POINT #16 ... The variable defined during configuration of FB016.
CHANNEL 62, PARAMETER 01 - POINT #16 ALARM STATUS ... STATUS WORD 46 as defined in para. 2.2
CHANNEL 63, PARAMETER 01 - POINT #16 STATUS ... STATUS WORD 47 as defined in para. 2.2
CHANNEL 64, PARAMETER 01 - POINT #17 ... The variable defined during configuration of FB017.
CHANNEL 65, PARAMETER 01 - POINT #17 ALARM STATUS ... STATUS WORD 48 as defined in para. 2.2
CHANNEL 66, PARAMETER 01 - POINT #17 STATUS ... STATUS WORD 49 as defined in para. 2.2
CHANNEL 67, PARAMETER 01 - POINT #18 ... The variable defined during configuration of FB018.
CHANNEL 68, PARAMETER 01 - POINT #18 ALARM STATUS ... STATUS WORD 50 as defined in para. 2.2
CHANNEL 69, PARAMETER 01 - POINT #18 STATUS ... STATUS WORD 51 as defined in para. 2.2
CHANNEL 70, PARAMETER 01 - POINT #19 ... The variable defined during configuration of FB019.
CHANNEL 71, PARAMETER 01 - POINT #19 ALARM STATUS ... STATUS WORD 52 as defined in para. 2.2
CHANNEL 72, PARAMETER 01 - POINT #19 STATUS ... STATUS WORD 53 as defined in para. 2.2
CHANNEL 73, PARAMETER 01 - POINT #20 ... The variable defined during configuration of FB020.
CHANNEL 74, PARAMETER 01 - POINT #20 ALARM STATUS ... STATUS WORD 54 as defined in para. 2.2
CHANNEL 75, PARAMETER 01 - POINT #20 STATUS ... STATUS WORD 55 as defined in para. 2.2
CHANNEL 76, PARAMETER 01 - POINT #21 ... The variable defined during configuration of FB021.
CHANNEL 77, PARAMETER 01 - POINT #21 ALARM STATUS ... STATUS WORD 56 as defined in para. 2.2
CHANNEL 78, PARAMETER 01 - POINT #21 STATUS ... STATUS WORD 57 as defined in para. 2.2
CHANNEL 79, PARAMETER 01 - POINT #22 ... The variable defined during configuration of FB022.
CHANNEL 80, PARAMETER 01 - POINT #22 ALARM STATUS ... STATUS WORD 58 as defined in para. 2.2
CHANNEL 81, PARAMETER 01 - POINT #22 STATUS ... STATUS WORD 59 as defined in para. 2.2
CHANNEL 82, PARAMETER 01 - POINT #23 ... The variable defined during configuration of FB023.
CHANNEL 83, PARAMETER 01 - POINT #23 ALARM STATUS ... STATUS WORD 60 as defined in para. 2.2
CHANNEL 84, PARAMETER 01 - POINT #23 STATUS ... STATUS WORD 61 as defined in para. 2.2
CHANNEL 85, PARAMETER 01 - POINT #24 ... The variable defined during configuration of FB024.
CHANNEL 86, PARAMETER 01 - POINT #24 ALARM STATUS ... STATUS WORD 62 as defined in para. 2.2.

CHANNEL 87, PARAMETER 01 - POINT #24 STATUS ... STATUS WORD 63 as defined in para. 2.2

2.1.2 PARAMETERS

2.1.2.1 Parameter Requests

The LINK interface will transmit the following Parameter Data in RESPONSE to a RANDOM PARAMETER DATA REQUEST which requests the Model 363 to send from 1 to 5 random parameter values. When more than 5 parameters are requested, the 363 will transmit the first 5. Any invalid parameters will be transmitted as $0. Also, certain parameters will respond to a MULTI-BYTE PARAMETER REQUEST in which case the Model 363 will transmit all the parameter data associated with the multi-byte data. Responses to invalid MULTI-BYTE PARAMETER REQUESTS (incorrect starting parameter or incorrect length) will be transmitted as $0.

2.1.2.2 Parameter Changes

The LINK interface will accept CHANGES to the parameter data for specified parameters when a proper command is received.

2.2 STATUS WORDS

STATION DATA SIZE
CHANNEL 01, PARAMETER 01 - The numeric code for the Station Data Size of the Model 363 transmitted as follows:

- $0F = 15 channels if no display blocks (FB01:24) are configured
- $12 = 18 channels if FB01 is the highest numbered configured display block
- $15 = 21
- $18 = 24 FB03
- $1B = 27 FB04
- $1E = 30 FB05
- $21 = 33
- $24 = 36 FB07
- $27 = 39
- $2A = 42
- $2D = 45 FB10
- $30 = 48 FB11
- $33 = 51 FB12
- $36 = 54
- $39 = 57
- $3C = 60
- $3F = 63
- $42 = 66
- $45 = 69
- $48 = 72
- $4B = 75
- $4E = 78
- $51 = 81
- $54 = 84
- $57 = 87

March 1995
LOCAL INSTRUMENT LINK COMMUNICATIONS

CHANNEL 01, PARAMETER 02 - BOARD STATUS - STATUS WORD 01 - Indicates which boards are installed.

<table>
<thead>
<tr>
<th>BIT</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>0</td>
<td>--</td>
</tr>
</tbody>
</table>

BIT 0: MPU (MP) ----------- indicates presence of MPU board, set to "1"

1 MPU BOARD

BIT 1: LINK (LK) ----------- this bit indicates presence of LINK board, set to "1"

1 LINK BOARD

BIT 2: DISPLAY (D) -------- this bit indicates presence of a 351 Display, set to "1"

1 DISPLAY

BIT 3: UNIVERSAL INPUT (U1) - this bit indicates presence of Universal Input to "1", set to "1"

1 VOLTAGE INPUT

BIT 4: DISCRETE I/O #1 (IO1) - this bit indicates presence of I/O #1, set to "1"

1 I/O #1

BIT 5: DISCRETE I/O #2 (IO2) - this bit indicates presence of I/O #2, set to "1"

1 I/O #2

BITS 6-15: not used - set to "0"

CHANNEL 01, PARAMETER 03 - Characters 1 & 2 of the MPU software level. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 03 thru 04.

$**++** = $20 to $5E ASCII code for character 1

++ = $20 to $5E ASCII code for character 2

CHANNEL 01, PARAMETER 04 - Character 3 of the MPU software level.

$++20 ++ = $20 to $5E ASCII code for character 3

CHANNEL 01, PARAMETER 05 - Characters 1 & 2 of the LINK software level. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 05 thru 06.

$**++** = $20 to $5E ASCII code for character 1

++ = $20 to $5E ASCII code for character 2

CHANNEL 01, PARAMETER 06 - Character 3 of the LINK software level.

$++20 ++ = $20 to $5E ASCII code for character 3

CHANNEL 01, PARAMETER 07 - Characters 1 & 2 of the Input Bd #1 software level. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 07 thru 08.

$**++** = $20 to $5E ASCII code for character 1

++ = $20 to $5E ASCII code for character 2

March 1995
CHANNEL 01, PARAMETER 08 - Character 3 of the Input Bd #1 software level.

$4+20 += $20 to $5E ASCII code for character 3

CHANNEL 01, PARAMETER 09 - Characters 1 & 2 of the Input Bd #2 software level. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 09 thru 10.

$**+ += $20 to $5E ASCII code for character 1

++= $20 to $5E ASCII code for character 2

CHANNEL 01, PARAMETER 10 - Character 3 of the Input Bd #2 software level.

$4+20 += $20 to $5E ASCII code for character 3

CHANNEL 01, PARAMETER 256 - Global Parameter Data Type

1 STATION SIZE ($0001)

CHANNEL 02, PARAMETER 01 - Station Type - The numeric code for station type. Transmitted as $000A indicating that this station is a Model 363.

CHANNEL 02, PARAMETER 02 - Characters 1 & 2 of the station I.D. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 02 thru 07.

$**+ += $20 to $5E ASCII code for character 1

++= $20 to $5E ASCII code for character 2

CHANNEL 02, PARAMETER 03 - Characters 3 & 4 of the station I.D.

$**+ += $20 to $5E ASCII code for character 3

++= $20 to $5E ASCII code for character 4

CHANNEL 02, PARAMETER 04 - Characters 5 & 6 of the station I.D.

$**+ += $20 to $5E ASCII code for character 5

++= $20 to $5E ASCII code for character 6

CHANNEL 02, PARAMETER 05 - Characters 7 & 8 of the station I.D.

$**+ += $20 to $5E ASCII code for character 7

++= $20 to $5E ASCII code for character 8

CHANNEL 02, PARAMETER 06 - Characters 9 & 10 of the station I.D.

$**+ += $20 to $5E ASCII code for character 9

++= $20 to $5E ASCII code for character 10

CHANNEL 02, PARAMETER 07 - Characters 11 & 12 of the station I.D.

$**+ += $20 to $5E ASCII code for character 11

++= $20 to $5E ASCII code for character 12

CHANNEL 02, PARAMETER 08 - Database Revision Number

$0000 - $7FFF (0 to 32,767)

CHANNEL 02, PARAMETER 09 - Characters 1 & 2 of the configuration filename. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 09 thru 12.
LOCAL INSTRUMENT LINK COMMUNICATIONS

$***+ ** = $20 to $5E ASCII code for character 1
 += $20 to $5E ASCII code for character 2

CHANNEL 02, PARAMETER 10 - Characters 3 & 4 of the configuration filename.

$***+ ** = $20 to $5E ASCII code for character 3
 += $20 to $5E ASCII code for character 4

CHANNEL 02, PARAMETER 11 - Characters 5 & 6 of the configuration filename.

$***+ ** = $20 to $5E ASCII code for character 5
 += $20 to $5E ASCII code for character 6

CHANNEL 02, PARAMETER 12 - Characters 7 & 8 of the configuration filename.

$***+ ** = $20 to $5E ASCII code for character 7
 += $20 to $5E ASCII code for character 8

CHANNEL 02, PARAMETER 13 - Station Configuration Starting Record - The numeric code for the first record of the station configuration.

CHANNEL 02, PARAMETER 14 - Station Configuration Size - The numeric code for the number of records in the station configuration.

CHANNEL 02, PARAMETER 256 - Global Parameter Data Type

2 STATION TYPE ($002)

CHANNEL 03, PARAMETER 01 - STATION STATUS - STATUS WORD 02

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
"1" -- E C3 C2 C1 -- -- -- R CH X1 X2 DV -- -- --
"0" -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

BIT 0: --------------------------- not used - set to "0"

BIT 1: --------------------------- not used - set to "0"

BIT 2: --------------------------- not used - set to "0"

BIT 3: DATABASE VALID (DV) - this bit indicates that the station has a valid configuration database. This bit will be cleared to "0" when the 363 is put into Configuration Hold (HOLD) and the first record is downloaded. It will be set to "1" by the 363 when all records have been successfully downloaded.

"1" ------------ DATABASE VALID
"0" ------------ (invalid)

BITS 4 & 5: CONFIGURATION UPDATE COUNTER (X1+X2) - this counter will hold decimal values of 0 to 3 with bit 05 being the most significant bit and bit 04 the least significant bit, and will function as follows:

On reset, the counter will be initialized to 0. The counter will increment NO MORE THAN ONCE EVERY 0.5 SECONDS when one or more of the following events occur within a 0.5 second period:

1) Local configuration change from the front panel
2) Configuration download from another LIL device

If the counter has a value of 3, then instead of incrementing, it will roll over to 0 again.

This counter will function as READ ONLY, so that changes cannot be made to it via LIL commands.

March 1995
BIT 6: CONFIG. HOLD (CH) - this bit indicates that the station is in Configuration Hold. The station will not accept commands except for RUN. This bit should be set to "1" prior to downloading a configuration data base. Whenever this bit is set to "1", the RUN bit (bit 7) will be set to 0, the faceplate will go blank and "HOLD" will be displayed.

"1" CONFIGURATION HOLD
"0" (not config. hold)

BIT 7: RUN (R) - this bit indicates that the station is in the RUN mode. It should be set to "1" after a configuration database has been downloaded. If this bit is set to "1" and bit 3 is "0" the 363 will use the previous data. Setting this bit to "1" will take the station out of configuration hold.

"1" RUN
"0" (config. hold)

BIT 8: not used - set to "0"

BIT 9: not used - set to "0"

BIT 10: not used - set to "0"

BIT 11: CONFIG. CHANGE #1 - this bit indicates that the configuration database was changed. This bit can be reset to "0" by an external device.

"1" CONFIG. CHANGE #1
"0" (reset)

BIT 12: CONFIG. CHANGE #2 - this bit indicates that the configuration database was changed. This bit can be reset to "0" by an external device.

"1" CONFIG. CHANGE #2
"0" (reset)

BIT 13: CONFIG. CHANGE #3 - this bit indicates that the configuration database was changed. This bit can be set or reset to "0" by an external device.

"1" CONFIG. CHANGE #3
"0" (reset)

BIT 14: ERROR - this bit indicates that an error exists in the Model 363.

"1" ERROR
"0" (no error)

BIT 15: not used - set to "0"

Changes can only be made to status word 02 by sending a 16-bit word with a "1" ONLY in the BIT position to be changed along with a "MASK ON" or "MASK OFF" command. The command source to "MASK ON" bits 6 or 7 must match the station mode (i.e. CONSOLE/COMPUTER) while a command to "MASK OFF" bits 11, 12, 13 or 14 is not required to match the station mode.

BITS 0-5: Changes to these bits will be ignored.
BIT 6: A "MASK ON" will put the station in "CONFIGURATION HOLD"
BIT 7: A "MASK ON" will put the station in "RUN"
BITS 8-10: Changes to these bits will be ignored.
BIT 11: A "MASK OFF" will RESET the Configuration Change Bit #1.
BIT 12: A "MASK OFF" will RESET the Configuration Change Bit #2.
BIT 13: A "MASK OFF" will RESET the Configuration Change Bit #3.
BIT 14: A "MASK OFF" will RESET the ERROR bit.
BIT 15: Changes to this bit will be ignored.
LOCAL INSTRUMENT LINK COMMUNICATIONS

CHANNEL 03 PARAMETERS
If a MULTIBYTE parameter request is made to this parameter, the Model 363 will return the complete station time (i.e. parameters 03, 04, 05 & 06).

CHANNEL 03, PARAMETER 03 - STATION TIME - STD - The Station Time in Days since 1/1/80. The STD is transmitted as 0 to 35640 ($0000 to 8B3B).

Changes to this parameter affect the station time (i.e. hours, minutes & seconds) and can only be made while in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)]. Changes addressed to this parameter must be made using an 8-byte MULTIBYTE command and will actually affect parameters 3, 4, 5 & 6. Commands will be decoded as follows:

DD HH MM SS (8-BYTE DATA)
DD = no. of days since 1/1/80 $0000 - $5260 (0 to 21184)
HH = hours $0000 - $0017 (0 to 23)
MM = minutes $0000 - $003B (0 to 59)
SS = seconds $0000 - $003B (0 to 59)

CHANNEL 03, PARAMETER 04 - HOURS - STH - The Station Time in Hours from 0 (midnight) to 23. The STH is transmitted as 0 to 23 ($0000 to $0017).

Changes to this parameter affect the station time (i.e. hours, minutes & seconds) and can only be made while in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)]. Changes addressed to this parameter must be made using an 8-byte MULTIBYTE command and will actually affect parameters 3, 4, 5 & 6. Commands will be decoded as follows:

DD HH MM SS (8-BYTE DATA)
DD = no. of days since 1/1/80 $0000 - $5260 (0 to 21184)
HH = hours $0000 - $0017 (0 to 23)
MM = minutes $0000 - $003B (0 to 59)
SS = seconds $0000 - $003B (0 to 59)

CHANNEL 03, PARAMETER 05 - MINUTES - STM - The Station Time in Minutes from 0 to 59. The STM is transmitted as 0 to 59 ($0000 - $003B).

Changes to this parameter affect the station time (i.e. hours, minutes & seconds) and can only be made while in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)]. Changes addressed to this parameter must be made using an 8-byte MULTIBYTE command and will actually affect parameters 3, 4, 5 & 6. Commands will be decoded as follows:

DD HH MM SS (8-BYTE DATA)
DD = no. of days since 1/1/80 $0000 - $5260 (0 to 21184)
HH = hours $0000 - $0017 (0 to 23)
MM = minutes $0000 - $003B (0 to 59)
SS = seconds $0000 - $003B (0 to 59)

CHANNEL 03, PARAMETER 06 - SECONDS - STS - The Station Time in Seconds from 0 to 59. The STS is transmitted as 0 to 59 ($0000 - $003B).

Changes to this parameter affect the station time (i.e. hours, minutes & seconds) and can only be made while in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)]. Changes addressed to this parameter must be made using an 8-byte MULTIBYTE command and will actually affect parameters 3, 4, 5 & 6. Commands will be decoded as follows:

DD HH MM SS (8-BYTE DATA)
DD = no. of days since 1/1/80 $0000 - $5260 (0 to 21184)
HH = hours $0000 - $0017 (0 to 23)
MM = minutes $0000 - $003B (0 to 59)
SS = seconds $0000 - $003B (0 to 59)
CHANNEL 03, PARAMETER 256 - Global Parameter Data Type

3 STATION STATUS ($0003)

CHANNEL 04, PARAMETER 01 - STATION ERROR CODE - The code defining an error in the Model 363. It is transmitted as a number from $0000 to $00FF.

Parameter Changes - The error code can be cleared by sending a 16-bit absolute command of $0000, provided the code represents a previous error and not a current one. The command source must match the station mode (CONSOLE/COMPUTER).

CHANNEL 04, PARAMETER 256 - Global Parameter Data Type

4 STATION ERROR ($0004)

CHANNEL 05, PARAMETER 01 - FUNCTION BLOCK STATUS - STATUS WORD 03

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
"1* " -- -- -- OS -- -- -- -- -- -- CM CN -- -- L --
"0* " -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

BIT 0: ----------------------- not used - set to '0'

BIT 1: LOCAL (L) ----------- this bit indicates the source of operational control. It can be changed by the operator. A similar action can take place over the LINK. (Note: a logic "0" indicates non-local control and bits 4 & 5 will indicate the exact source.)

"1* " ---------------------- LOCAL
"0* " ---------------------- (not local)

BITS 2-3: ------------------------ not used - set to "0"

BIT 4: CONSOLE (CN) --- this bit indicates that the source of operational control is a console.

"1* " ---------------------- CONSOLE
"0* " ---------------------- (not console)

BIT 5: COMPUTER (CM) - this bit indicates that the source of operational control is a computer.

"1* " ---------------------- COMPUTER
"0* " ---------------------- (not computer)

BITS 6-11: ----------------------- not used - set to "0"

BIT 12: OUT OF SERVICE - this bit indicates that all the LINK alarms for the entire station are OUT OF SERVICE.

"1* " ---------------------- OUT OF SERVICE
"0* " ---------------------- (normal)

BITS 13-15: ----------------------- not used - set to "0"

Changes can only be made to status word 03 by sending a 16-bit word with a "1" ONLY in the BIT position to be changed along with a "MASK ON" or "MASK OFF" command. The command source to change bits 1, 4 or 5 should be identified as ANYSOURCE, while for bit 12 it must match the station mode (i.e. CONSOLE/COMPUTER).

BIT 0: Changes to this bit will be ignored.
BIT 1: A "MASK ON" will set the operational control source as LOCAL (L).
BIT 2: Changes to this bit will be ignored.
BIT 3: Changes to this bit will be ignored.
BIT 4: A "MASK ON" will set the operational control source as CONSOLE (C).

March 1995

2-11
BIT 5: "MASK ON" will set the operational control source as COMPUTER (C).
BIT 6-11: Changes to these bits will be ignored.
BIT 12: "MASK ON" puts all LINK ALARMS for the entire station "OUT OF SERVICE" and a "MASK OFF" puts them into normal operation.
BIT 13-15: Changes to these bits will be ignored.

CHANNEL 05, PARAMETER 2 - DISPLAY STATUS #1 - STATUS WORD 04

This status word indicates which display points (FB001-FB016) are configured (ESN # 0 AND HINA # 000). A "1" indicates that the point is configured and a "0" indicates that the point is not configured.

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
FB# 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

CHANNEL 05, PARAMETER 3 - DISPLAY STATUS #2 - STATUS WORD 05

This status word indicates which display points (FB017-FB024) are configured (ESN # 0 AND HINA # 0). A "1" indicates that the point is configured and a "0" indicates that the point is not configured.

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
FB# -- -- -- -- -- -- -- -- -- -- -- -- 24 23 22 21 20 19 18 17

CHANNEL 05, PARAMETER 4 - TIMER STATUS - STATUS WORD 64

This status word represents the output status for the four timer function blocks, Quad One Shot (FB92 & FB93) and Quad Delay (FB94 & FB95).

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
FB# -- -- -- -- -- -- -- -- -- -- -- -- -- -- 20 19 18 17

BIT 0: FB92 ONE SHOT TIMER 1 OUTPUT STATUS (S1)

"1" Hi Timer Output
"0" Lo Timer Output

BIT 1: FB92 ONE SHOT TIMER 2 OUTPUT STATUS (S2)

"1" Hi Timer Output
"0" Lo Timer Output

BIT 2: FB92 ONE SHOT TIMER 3 OUTPUT STATUS (S3)

"1" Hi Timer Output
"0" Lo Timer Output

BIT 3: FB92 ONE SHOT TIMER 4 OUTPUT STATUS (S4)

"1" Hi Timer Output
"0" Lo Timer Output

BIT 4: FB93 ONE SHOT TIMER 1 OUTPUT STATUS (S5)

"1" Hi Timer Output
"0" Lo Timer Output

BIT 5: FB93 ONE SHOT TIMER 2 OUTPUT STATUS (S6)

"1" Hi Timer Output
"0" Lo Timer Output

BIT 6: FB93 ONE SHOT TIMER 3 OUTPUT STATUS (S7)

March 1995
BIT 7: FB93 ONE SHOT TIMER 1 OUTPUT STATUS (S1)

"1".................. Hi Timer Output
"0".................. Lo Timer Output

BIT 8: FB94 DELAY TIMER 1 OUTPUT STATUS (D1)

"1".................. Hi Timer Output
"0".................. Lo Timer Output

BIT 9: FB94 DELAY TIMER 2 OUTPUT STATUS (D2)

"1".................. Hi Timer Output
"0".................. Lo Timer Output

BIT 10: FB94 DELAY TIMER 3 OUTPUT STATUS (D3)

"1".................. Hi Timer Output
"0".................. Lo Timer Output

BIT 11: FB94 DELAY TIMER 4 OUTPUT STATUS (D4)

"1".................. Hi Timer Output
"0".................. Lo Timer Output

BIT 12: FB95 DELAY TIMER 1 OUTPUT STATUS (D5)

"1".................. Hi Timer Output
"0".................. Lo Timer Output

BIT 13: FB95 DELAY TIMER 2 OUTPUT STATUS (D6)

"1".................. Hi Timer Output
"0".................. Lo Timer Output

BIT 14: FB95 DELAY TIMER 3 OUTPUT STATUS (D7)

"1".................. Hi Timer Output
"0".................. Lo Timer Output

BIT 15: FB95 DELAY TIMER 4 OUTPUT STATUS (D8)

"1".................. Hi Timer Output
"0".................. Lo Timer Output

CHANNEL 05, PARAMETER 256 - Global Parameter Data Type

1200 FUNCTION BLOCK (S0480)

CHANNEL 06, PARAMETER 01 - PEN STATUS - STATUS WORD 06

<table>
<thead>
<tr>
<th>BIT 15</th>
<th>BIT 14</th>
<th>BIT 13</th>
<th>BIT 12</th>
<th>BIT 11</th>
<th>BIT 10</th>
<th>BIT 09</th>
<th>BIT 08</th>
<th>BIT 07</th>
<th>BIT 06</th>
<th>BIT 05</th>
<th>BIT 04</th>
<th>BIT 03</th>
<th>BIT 02</th>
<th>BIT 01</th>
<th>BIT 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1"</td>
<td>"1"</td>
<td>"1"</td>
<td>"1"</td>
<td>"0"</td>
</tr>
<tr>
<td>"0"</td>
<td>"0"</td>
<td>"0"</td>
<td>"0"</td>
<td>"1"</td>
</tr>
</tbody>
</table>

BIT 0: RED PEN this bit indicates the chart speed for this pen.

"1" FAST

March 1995
LOCAL INSTRUMENT LINK COMMUNICATIONS

0 slow

BIT 1: BLUE PEN -------- this bit indicates the chart speed for this pen.

 1 FAST
 0 slow

BIT 2: GREEN PEN -------- this bit indicates the chart speed for this pen.

 1 FAST
 0 slow

BIT 3: CYAN PEN -------- this bit indicates the chart speed for this pen.

 1 FAST
 0 slow

BIT 4: ORANGE PEN ------ this bit indicates the chart speed for this pen.

 1 FAST
 0 slow

BIT 5: MAGENTA PEN ---- this bit indicates the chart speed for this pen.

 1 FAST
 0 slow

BIT 6: RED PEN -------- this bit indicates if this pen's chart is running.

 1 RUNNING
 0 (stopped)

BIT 7: BLUE PEN -------- this bit indicates if this pen's chart is running.

 1 RUNNING
 0 (stopped)

BIT 8: GREEN PEN ------ this bit indicates if this pen's chart is running.

 1 RUNNING
 0 (stopped)

BIT 9: CYAN PEN -------- this bit indicates if this pen's chart is running.

 1 RUNNING
 0 (stopped)

BIT 10: ORANGE PEN ---- this bit indicates if this pen's chart is running.

 1 RUNNING
 0 (stopped)

BIT 11: MAGENTA PEN -- this bit indicates if this pen's chart is running.

 1 RUNNING
 0 (stopped)

BITS 12-15: -------------- not used - set to "0"
Changes can only be made to status word 06 by sending a 16-bit word with a "1" ONLY in the BIT position to be changed along with a "MASK ON" or "MASK OFF" command. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

BIT 0: A "MASK ON" will set the chart speed to fast for the Red pen.
A "MASK OFF" will set the chart speed to slow for the Red pen.
BIT 1: A "MASK ON" will set the chart speed to fast for the Blue pen.
A "MASK OFF" will set the chart speed to slow for the Blue pen.
BIT 2: A "MASK ON" will set the chart speed to fast for the Green pen.
A "MASK OFF" will set the chart speed to slow for the Green pen.
BIT 3: A "MASK ON" will set the chart speed to fast for the Cyan pen.
A "MASK OFF" will set the chart speed to slow for the Cyan pen.
BIT 4: A "MASK ON" will set the chart speed to fast for the Orange pen.
A "MASK OFF" will set the chart speed to slow for the Orange pen.
BIT 5: A "MASK ON" will set the chart speed to fast for the Magenta pen.
A "MASK OFF" will set the chart speed to slow for the Magenta pen.
BIT 6: A "MASK ON" will start the chart for the Red pen. A "MASK OFF" will stop the chart for the Red pen.
BIT 7: A "MASK ON" will start the chart for the Blue pen. A "MASK OFF" will stop the chart for the Blue pen.
BIT 8: A "MASK ON" will start the chart for the Green pen. A "MASK OFF" will stop the chart for the Green pen.
BIT 9: A "MASK ON" will start the chart for the Cyan pen. A "MASK OFF" will stop the chart for the Cyan pen.
BIT 10: A "MASK ON" will start the chart for the Orange pen. A "MASK OFF" will stop the chart for the Orange pen.
BIT 11: A "MASK ON" will start the chart for the Magenta pen. A "MASK OFF" will stop the chart for the Magenta pen.
BITS 12-15: Changes to these bits will be ignored.

CHANNEL 06, PARAMETER 256 - Global Parameter Data Type

1220 PEN STATUS ($04C4)

CHANNEL 07, PARAMETER 01 - TOTALIZER RESET STATUS #1 - STATUS WORD 07

This status word indicates if the totalizer in FB001-FB016 is reset. A "1" indicates reset. A "0" indicates no reset.

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
FB# 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

Changes can only be made to status word 07 by sending a 16-bit word with a "1" ONLY in the BIT position to be changed along with a "MASK ON" command. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

BIT 0: A "MASK ON" will reset the totalizer in FB01.
BIT 1: A "MASK ON" will reset the totalizer in FB02.
BIT 2: A "MASK ON" will reset the totalizer in FB03.
BIT 3: A "MASK ON" will reset the totalizer in FB04.
BIT 4: A "MASK ON" will reset the totalizer in FB05.
BIT 5: A "MASK ON" will reset the totalizer in FB06.
BIT 6: A "MASK ON" will reset the totalizer in FB07.
BIT 7: A "MASK ON" will reset the totalizer in FB08.
BIT 8: A "MASK ON" will reset the totalizer in FB09.
BIT 9: A "MASK ON" will reset the totalizer in FB10.
BIT 10: A "MASK ON" will reset the totalizer in FB11.
BIT 11: A "MASK ON" will reset the totalizer in FB12.
BIT 12: A "MASK ON" will reset the totalizer in FB13.
BIT 13: A "MASK ON" will reset the totalizer in FB14.
BIT 14: A "MASK ON" will reset the totalizer in FB15.
BIT 15: A "MASK ON" will reset the totalizer in FB16.
LOCAL INSTRUMENT LINK COMMUNICATIONS

CHANNEL 07, PARAMETER 02 - TOTALIZER CONFIGURATION STATUS #1 - STATUS WORD 08

This status word indicates if the totalizer in FB001-FB016 is configured. A "1" indicates configured. A "0" indicates not configured.

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
FB# 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

CHANNEL 07, PARAMETER 256 - Global Parameter Data Type

1210 TOTALIZER STATUS #1 ($04BA)

CHANNEL 08, PARAMETER 01 - TOTALIZER RESET STATUS #2 - STATUS WORD 09

This status word indicates if the totalizer in FB017-FB024 is reset. A "1" indicates reset. A "0" indicates no reset.

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
FB# -- -- -- -- -- -- -- -- 24 23 22 21 20 19 18 17

Changes can only be made to status word 09 by sending a 16-bit word with a "1" ONLY in the BIT position to be changed along with a "MASK ON" command. Changes can only be made in the "C" mode (i.e. command source matches station mode (CONSOLE/COMPUTER)) and will be entered as follows:

BIT 0: A "MASK ON" will reset the totalizer in FB17.
BIT 1: A "MASK ON" will reset the totalizer in FB18.
BIT 2: A "MASK ON" will reset the totalizer in FB19.
BIT 3: A "MASK ON" will reset the totalizer in FB20.
BIT 4: A "MASK ON" will reset the totalizer in FB21.
BIT 5: A "MASK ON" will reset the totalizer in FB22.
BIT 6: A "MASK ON" will reset the totalizer in FB23.
BIT 7: A "MASK ON" will reset the totalizer in FB24.
BIT 8: A "MASK ON" will reset the totalizer in FB01-FB24.
BIT 9-15: Changes to these bits will be ignored.

CHANNEL 08, PARAMETER 02 - TOTALIZER CONFIGURATION STATUS #2 - STATUS WORD 10

This status word indicates if the totalizer in FB017-FB024 is configured. A "1" indicates configured. A "0" indicates not configured.

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
FB# -- -- -- -- -- -- -- -- 24 23 22 21 20 19 18 17

CHANNEL 08, PARAMETER 256 - Global Parameter Data Type

1211 TOTALIZER STATUS #2 ($04BB)

CHANNEL 09, PARAMETER 01 - PEN CONFIGURATION STATUS - STATUS WORD 11

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
"1" -- -- -- -- -- -- -- -- -- -- -- -- -- --
"0" -- -- -- -- -- -- -- -- -- -- -- -- -- --

BIT 0: RED PEN ----------- this bit indicates if this pen has been configured. (FB31: ESN# 0 AND HRED# 0 AND the associated display block: ESN# 0 AND HINA# 0)

"1" CONFIGURED
"0" (not configured)

BIT 1: BLUE PEN ----------- this bit indicates if this pen has been configured. (FB31: ESN# 0 AND HBLU# 0 AND the associated display block: ESN# 0 AND HINA# 0)

March 1995
"1" CONFIGURED
"0" (not configured)

BIT 2: GREEN PEN -------- this bit indicates if this pen has been configured. (FB31: ESN≠ 0 AND HGRN≠ 0 AND the associated display block: ESN≠ 0 AND HINA≠ 0)

"1" CONFIGURED
"0" (not configured)

BIT 3: CYAN PEN -------- this bit indicates if this pen has been configured. (FB31: ESN≠ 0 AND HCYN≠ 0 AND the associated display block: ESN≠ 0 AND HINA≠ 0)

"1" CONFIGURED
"0" (not configured)

BIT 4: ORANGE PEN ------ this bit indicates if this pen has been configured. (FB31: ESN≠ 0 AND HORG≠ 0 AND the associated display block: ESN≠ 0 AND HINA≠ 0)

"1" CONFIGURED
"0" (not configured)

BIT 5: MAGENTA RED PEN - this bit indicates if this pen has been configured. (FB31: ESN≠ 0 AND HMAG≠ 0 AND the associated display block: ESN≠ 0 AND HINA≠ 0)

"1" CONFIGURED
"0" (not configured)

BITS 6-15: ---------------- not used - set to "0"

CHANNEL 09, PARAMETER 256 - Global Parameter Data Type

1221 PEN CONFIGURATION ($04C5)

CHANNEL 10, PARAMETER 01 - CHANNEL "A" - The variable defined during hard configuration of FB98 by selecting source for input A.

CHANNEL 10, PARAMETER 02 - OUTPUT 100 (FB98) - Retransmission of FB98 output 100
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 100. However, if the station address parameter "HA100" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK OFF command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 03 - OUTPUT 101 (FB98) - Retransmission of FB98 output 101
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 101. However, if the station address parameter "HA101" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

March 1995
16-bit INTEGER ABSOLUTE command - will change value as follows:

0000 to $0FFF$
-3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 04 - OUTPUT 102 (FB98) - Retransmission of FB98 output 102

This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 102. However, if the station address parameter "HA102" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

0000 to $0FFF$
-3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 05 - OUTPUT 103 (FB98) - Retransmission of FB output 103

This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 103. However, if the station address parameter "HA103" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

0000 to $0FFF$
-3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 06 - OUTPUT 104 (FB98) - Retransmission of FB98 output 104

This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 104. However, if the station address parameter "HA104" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

0000 to $0FFF$
-3.3% to 103.3%
MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 07 - OUTPUT 105 (FB98) - Retransmission of FB98 output 105
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 105. However, if the station address parameter "HA105" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 08 - OUTPUT 106 (FB98) - Retransmission of FB98 output 106
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 106. However, if the station address parameter "HA106" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 09 - OUTPUT 107 (FB98) - Retransmission of FB98 output 107
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 107. However, if the station address parameter "HA107" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.
LOCAL INSTRUMENT LINK COMMUNICATIONS

CHANNEL 10, PARAMETER 10 - OUTPUT 108 (FB98) - Retransmission of FB98 output 108

This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 108. However, if the station address parameter "HA108" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 11 - OUTPUT 109 (FB98) - Retransmission of FB98 output 109

This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 109. However, if the station address parameter "HA109" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 12 - OUTPUT 110 (FB98) - Retransmission of FB98 output 110

This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 110. However, if the station address parameter "HA110" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 13 - OUTPUT 111 (FB98) - Retransmission of FB98 output 111

This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 111. However, if the station address parameter "HA111" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

2-20 March 1995
16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 14 - OUTPUT 112 (FB98) - Retransmission of FB98 output 112
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 112. However, if the station address parameter "HA112" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 15 - OUTPUT 113 (FB98) - Retransmission of FB98 output 113
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 113. However, if the station address parameter "HA113" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 16 - OUTPUT 114 (FB98) - Retransmission of FB98 output 114
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 114. However, if the station address parameter "HA114" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.
LOCAL INSTRUMENT LINK COMMUNICATIONS

MASK ON command with a "1" in bit position 10 - will set output to 100%.
MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 17 - OUTPUT 115 (FB98) - Retransmission of FB98 output 115
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 115. However, if the station address parameter "HA115" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 18 - OUTPUT 116 (FB98) - Retransmission of FB98 output 116
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 116. However, if the station address parameter "HA116" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 19 - OUTPUT 117 (FB98) - Retransmission of FB98 output 117
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 117. However, if the station address parameter "HA117" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 20 - OUTPUT 118 (FB98) - Retransmission of FB98 output 118
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 118. However, if the station address
parameter "HA118" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 21 - OUTPUT 119 (FB98) - Retransmission of FB98 output 119
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 119. However, if the station address parameter "HA119" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 22 - OUTPUT 120 (FB98) - Retransmission of FB98 output 120
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 120. However, if the station address parameter "HA120" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

MASK ON command with a "1" only in bit position 11 - will set output to 0% if not already there, then set it to 100% for approximately 1s, and finally return to 0%.

MASK ON command with a "1" in bit position 10 - will set output to 100%.

MASK OFF command with a "1" in bit position 10 - will set output to 0%.

CHANNEL 10, PARAMETER 23 - OUTPUT 121 (FB98) - Retransmission of FB98 output 121
This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 121. However, if the station address parameter "HA121" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%
LOCAL INSTRUMENT LINK COMMUNICATIONS

Channel 10, Parameter 24 - Output 122 (FB98) - Retransmission of FB98 output 122

This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 122. However, if the station address parameter "HA122" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

Channel 10, Parameter 25 - Output 123 (FB98) - Retransmission of FB98 output 123

This parameter is generally configured to receive GLOBAL data from the Local Instrument Link and send it on to other function blocks in the Model 363 as output arrow no. 123. However, if the station address parameter "HA123" is set to "0", the value of the output arrow can be changed by using one of the following commands. The station must be in the "C" mode (i.e. command source matches stations mode CONSOLE/COMPUTER).

16-bit INTEGER ABSOLUTE command - will change value as follows:

$0000 to $0FFF -3.3% to 103.3%

Channel 10, Parameter 256 - Global Parameter Data Type

100 CHANNEL VARIABLE ($0064)

Channel 11, Parameter 01 - Input A Alarm Status - Status Word 12

Bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

1 -- -- -- OS E4 N4 A4 E3 N3 A3 E2 N2 A2 E1 N1 A1

0 -- -- -- -- -- -- -- -- -- -- -- -- -- --

Bit 0: Alarm 1 (A1) ------this bit indicates the status of the Input A alarm A1.

1 ALARM

0 (no alarm)
BIT 1: NAK #1 (N1) ------- this bit is SET whenever the alarm goes from a (no alarm) to an alarm condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK.

1 NOT ACKNOWLEDGED
0 (acknowledged)

BIT 2: ENABLED #1 (E1) - this bit indicates that INPUT A ALARM A1 has been ENABLED.

1 ENABLED
0 (not enabled)

BIT 3: ALARM 2 (A2) ------- this bit indicates the status of the INPUT A ALARM A2.

1 ALARM
0 (no alarm)

BIT 4: NAK #2 (N2) ------- this bit is SET whenever the alarm goes from a (no alarm) to an ALARM condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK.

1 NOT ACKNOWLEDGED
0 (acknowledged)

BIT 5: ENABLED #2 (E2) - this bit indicates that INPUT A ALARM A2 has been ENABLED.

1 ENABLED
0 (not enabled)

BIT 6: ALARM 3 (A3) ------- this bit indicates the status of the INPUT A ALARM A3.

1 ALARM
0 (no alarm)

BIT 7: NAK #3 (N3) ------- this bit is SET whenever the alarm goes from a (no alarm) to an ALARM condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK.

1 NOT ACKNOWLEDGED
0 (acknowledged)

BIT 8: ENABLED #3 (E3) - this bit indicates that INPUT A ALARM A3 has been ENABLED.

1 ENABLED
0 (not enabled)

BIT 9: ALARM 4 (A4) ------- this bit indicates the status of the INPUT A ALARM A4.

1 ALARM
0 (no alarm)

BIT 10: NAK #4 (N4) ------- this bit is SET whenever the alarm goes from a (no alarm) to an ALARM condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK.

1 NOT ACKNOWLEDGED
0 (acknowledged)

BIT 11: ENABLED #4 (E4) - this bit indicates that INPUT A ALARM A4 has been ENABLED.

1 ENABLED
LOCAL INSTRUMENT LINK COMMUNICATIONS

"0" (not enabled)

BIT 12: OUT OF SERVICE (OS) - this bit indicates that all the INPUT A alarms are OUT OF SERVICE.

"1" OUT OF SERVICE
"0" (normal)

BITS 13-15: ------------ not used - set to "0"

Changes can be made to status word 12 by sending a 16-bit word with a "1" in the BIT position(s) to be changed along with a "MASK ON" or "MASK OFF" command. Changes can be made while the station is in LOCAL but the command source must match the CONSOLE/COMPUTER status bits (e.g. ref. status word 03).

BIT 0: Changes to this bit will be ignored.
BIT 1: A "MASK OFF" will ACKNOWLEDGE alarm #1.
BIT 2: A "MASK ON" will ENABLE alarm #1 and a "MASK OFF" will DISABLE it.
BIT 3: Changes to this bit will be ignored.
BIT 4: A "MASK OFF" will ACKNOWLEDGE alarm #2.
BIT 5: A "MASK ON" will ENABLE alarm #2 and a "MASK OFF" will DISABLE it.
BIT 6: Changes to this bit will be ignored.
BIT 7: A "MASK OFF" will ACKNOWLEDGE alarm #3.
BIT 8: A "MASK ON" will ENABLE alarm #3 and a "MASK OFF" will DISABLE it.
BIT 9: Changes to this bit will be ignored.
BIT 10: A "MASK OFF" will ACKNOWLEDGE alarm #4.
BIT 11: A "MASK ON" will ENABLE alarm #4 and a "MASK OFF" will DISABLE it.
BIT 12: A "MASK ON" puts all INPUT A LINK ALARMS "OUT OF SERVICE" and a "MASK OFF" puts them into normal operation.

BITS 13-15: Changes to these bits will be ignored.

CHANNEL 11, PARAMETER 02 - INPUT A A1 LIMIT- The A1 alarm limit has a valid range of -3.3% to 103.3%. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all data associated with parameters 2 thru 5.

a) $0000 - $0FFF (A1 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FFF (-3.3% to 103.3%)

CHANNEL 11, PARAMETER 03 - INPUT A A2 LIMIT- The A2 alarm limit has a valid range of -3.3% to 103.3%.

a) $0000 - $0FFF (A2 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FFF (-3.3% to 103.3%)

CHANNEL 11, PARAMETER 04 - INPUT A A3 LIMIT- The A3 alarm limit has a valid range of -3.3% to 103.3%.

a) $0000 - $0FFF (A3 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FFF (-3.3% to 103.3%)

2-26

March 1995
CHANNEL 11, PARAMETER 05 - INPUT A A4 LIMIT - The A4 alarm limit has a valid range of -3.3% to 103.3%.

a) $0000 - $0FFF (A4 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FFF (-3.3% to 103.3%)

CHANNEL 11, PARAMETER 06 - INPUT A A1 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A1. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all data associated with parameters 6 thru 9.

Changes can be made to alarm #1 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm
1 1 1 - no alarm action required.

BITS: 4 3
0 0 - 0.1% alarm deadband
0 1 - 0.5% alarm deadband
1 0 - 1.0% alarm deadband
1 1 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.
CHANNEL 11, PARAMETER 07 - INPUT A2 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A2.

Changes can be made to alarm #2 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm
1 1 1 - no alarm action required.

BITS: 4 3
0 0 - 0.1% alarm deadband
0 1 - 0.5% alarm deadband
1 0 - 1.0% alarm deadband
1 1 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL 11, PARAMETER 08 - INPUT A3 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A3.

Changes can be made to alarm #3 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm
1 1 1 - no alarm action required.

BITS: 4 3
 0 0 - 0.1% alarm deadband
 0 1 - 0.5% alarm deadband
 1 0 - 1.0% alarm deadband
 1 1 - 5.0% alarm deadband

BITS: 7 6 5
 0 0 0 - 0.0 seconds - delay time IN
 0 0 1 - 0.4 seconds - delay time IN
 0 1 0 - 1.0 seconds - delay time IN
 0 1 1 - 2.0 seconds - delay time IN
 1 0 0 - 5.0 seconds - delay time IN
 1 0 1 - 15.0 seconds - delay time IN
 1 1 0 - 30.0 seconds - delay time IN
 1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
 0 0 0 - 0.0 seconds - delay time OUT
 0 0 1 - 0.4 seconds - delay time OUT
 0 1 0 - 1.0 seconds - delay time OUT
 0 1 1 - 2.0 seconds - delay time OUT
 1 0 0 - 5.0 seconds - delay time OUT
 1 0 1 - 15.0 seconds - delay time OUT
 1 1 0 - 30.0 seconds - delay time OUT
 1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
 0 - (ringback option not required)
 1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL 11, PARAMETER 09 - INPUT A4 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A4.

Changes can be made to alarm #4 while the station is in the *C* mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
 0 0 0 - no alarm action required
 0 0 1 - HIGH alarm
 0 1 0 - LOW alarm
 0 1 1 - no alarm action required
 1 0 0 - no alarm action required
 1 0 1 - no alarm action required
 1 1 0 - OUT OF RANGE alarm
 1 1 1 - no alarm action required.

BITS: 4 3
 0 0 - 0.1% alarm deadband
 0 1 - 0.5% alarm deadband
 1 0 - 1.0% alarm deadband
 1 1 - 5.0% alarm deadband
LOCAL INSTRUMENT LINK COMMUNICATIONS

BITS: 7 6 5
 0 0 0 - 0.0 seconds - delay time IN
 0 0 1 - 0.4 seconds - delay time IN
 0 1 0 - 1.0 seconds - delay time IN
 0 1 1 - 2.0 seconds - delay time IN
 1 0 0 - 5.0 seconds - delay time IN
 1 0 1 - 15.0 seconds - delay time IN
 1 1 0 - 30.0 seconds - delay time IN
 1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
 0 0 0 - 0.0 seconds - delay time OUT
 0 0 1 - 0.4 seconds - delay time OUT
 0 1 0 - 1.0 seconds - delay time OUT
 0 1 1 - 2.0 seconds - delay time OUT
 1 0 0 - 5.0 seconds - delay time OUT
 1 0 1 - 15.0 seconds - delay time OUT
 1 1 0 - 30.0 seconds - delay time OUT
 1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
 0 - (ringback option not required)
 1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL 11, PARAMETER 256 - Global Parameter Data Type

7 ALARM STATUS WORD ($0007)

CHANNEL 12, PARAMETER 1 - INPUT A CHANNEL STATUS - STATUS WORD 13

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
"1" - - CC OS - - - - - - CM CN - - L - -
"0" - - - - - - - - - - - - - - - - - -

BIT 0: ------------------------ not used - set to "0"

BIT 1: LOCAL (L) ---------- this bit indicates the source of operational control (i.e. the position of the C/L switch on the operator's panel). It can be changed by the operator by pushing the C/L button. A similar action can take place over the LINK. (Note: a logic "0" indicates non-local control and bits 4 & 5 will indicate the exact source.)

"1" LOCAL
"0" (not local)

BITS 2-3: ---------------------- not used - set to "0"

BIT 4: CONSOLE (CN) --- this bit indicates that the source of operational control is a console.

"1" CONSOLE
"0" (not console)

BIT 5: COMPUTER (CM) this bit indicates that the source of operational control is a computer.

"1" COMPUTER
"0" (not computer)

BITS 6-11: ---------------------- not used - set to "0"

BIT 12: OUT OF SERVICE (OS) - this bit indicates that all the Channel A LINK alarms are OUT OF SERVICE.

2-30

March 1995
"1" OUT OF SERVICE
"0" (normal)

BIT 13: CONFIGURED CHANNEL (CC) - this bit indicates FB98 input HINA is configured.

"1" HINA CONFIGURED
"0" (HINA not configured)

BITS 14-15: -------------- not used - set to "0"

Changes can be made to Channel A Status Word by sending a 16-bit word with a "1" ONLY in the BIT position to be changed along with a "MASK ON" or "MASK OFF" command. The command source to change BITS 1, 4, or 5 should be identified as ANYSOURCE, while for BIT 12 it must match the station mode (i.e. CONSOLE/COMPUTER).

BIT 0: Changes to this bit will be ignored.
BIT 1: A "MASK ON" will set the operational control source as LOCAL (L).
BIT 2: Changes to this bit will be ignored.
BIT 3: Changes to this bit will be ignored.
BIT 4: A "MASK ON" will set the operational control source as CONSOLE (C) and clear bit 1 & bit 5.
BIT 5: A "MASK ON" will set the operational control source as COMPUTER (C) and clear bit 1 & bit 4.
BIT 6-11: Changes to these bits will be ignored.
BIT 12: A "MASK ON" puts all CHANNEL A LINK ALARMS "OUT OF SERVICE" and a "MASK OFF" puts them into normal operation.
BIT 13-15: Changes to these bits will be ignored.

CHANNEL 12, PARAMETER 256 - Global Parameter Data Type

6 CHANNEL STATUS ($0006)

CHANNEL 13, PARAMETER 01 - CHANNEL B - The variable defined during hard configuration of FB98 by selecting a source for input B.

CHANNEL 13, PARAMETER 02 - Source for FB98 output 100. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 03 - Source for FB98 output 101. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 04 - Source for FB98 output 102. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 05 - Source for FB98 output 103. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 06 - Source for FB98 output 104. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 07 - Source for FB98 output 105. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).
CHANNEL 13, PARAMETER 08 - Source for FB98 output 106. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 09 - Source for FB98 output 107. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 10 - Source for FB98 output 108. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 11 - Source for FB98 output 109. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 12 - Source for FB98 output 110. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 13 - Source for FB98 output 111. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 14 - Source for FB98 output 112. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 15 - Source for FB98 output 113. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 16 - Source for FB98 output 114. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 17 - Source for FB98 output 115. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 18 - Source for FB98 output 116. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 19 - Source for FB98 output 117. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 20 - Source for FB98 output 118. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 21 - Source for FB98 output 119. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 22 - Source for FB98 output 120. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($**00 to $**FF represents channels 1 to 256).
CHANNEL 13, PARAMETER 23 - Source for FB98 output 121. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($00 to $FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 24 - Source for FB98 output 122. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($00 to $FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 25 - Source for FB98 output 123. This is a 16 bit multi-discrete word that defines the source of this output. Bits 8 through 15 identify the station no. ($00** to $3F** represents stations 1 to 64) and bits 0 through 7 the channel no. ($00 to $FF represents channels 1 to 256).

CHANNEL 13, PARAMETER 256 - Global Parameter Data Type

| 100 CHANNEL VARIABLE ($0064) |

CHANNEL 14, PARAMETER 01 - INPUT B ALARM STATUS - STATUS WORD 14

<table>
<thead>
<tr>
<th>BIT 15</th>
<th>BIT 14</th>
<th>BIT 13</th>
<th>BIT 12</th>
<th>BIT 11</th>
<th>BIT 10</th>
<th>BIT 09</th>
<th>BIT 08</th>
<th>BIT 07</th>
<th>BIT 06</th>
<th>BIT 05</th>
<th>BIT 04</th>
<th>BIT 03</th>
<th>BIT 02</th>
<th>BIT 01</th>
<th>BIT 00</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1"</td>
<td>"--"</td>
<td>"--"</td>
<td>"OS"</td>
<td>"E4"</td>
<td>"N3"</td>
<td>"A2"</td>
<td>"N2"</td>
<td>"A2"</td>
<td>"E1"</td>
<td>"N1"</td>
<td>"A1"</td>
<td>"0"</td>
<td>"--"</td>
<td>"--"</td>
<td>"--"</td>
</tr>
</tbody>
</table>

BIT 0: ALARM 1 (A1) ------ this bit indicates the status of the INPUT B ALARM A1.

- "1" ALARM
- "0" (no alarm)

BIT 1: NAK #1 (N1) ------ this bit is SET whenever the alarm goes from a (no alarm) to an alarm condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK.

- "1" NOT ACKNOWLEDGED
- "0" (acknowledged)

BIT 2: ENABLED #1 (E1) - this bit indicates that INPUT B ALARM A1 has been ENABLED.

- "1" ENABLED
- "0" (not enabled)

BIT 3: ALARM 2 (A2) ------ this bit indicates the status of the INPUT B ALARM A2.

- "1" ALARM
- "0" (no alarm)

BIT 4: NAK #2 (N2) ------ this bit is SET whenever the alarm goes from a (no alarm) to an ALARM condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK.

- "1" NOT ACKNOWLEDGED
- "0" (acknowledged)

BIT 5: ENABLED #2 (E2) - this bit indicates that INPUT B ALARM A2 has been ENABLED.

- "1" ENABLED
- "0" (not enabled)

BIT 6: ALARM 3 (A3) ------ this bit indicates the status of the INPUT B ALARM A3.

- "1" ALARM
- "0" (no alarm)
BIT 7: NAK #3 (N3) ——— this bit is SET whenever the alarm goes from a (no alarm) to an ALARM condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK.

1 NOT ACKNOWLEDGED
0 (acknowledged)

BIT 8: ENABLED #3 (E3) - this bit indicates that INPUT B ALARM A3 has been ENABLED.

1 ENABLED
0 (not enabled)

BIT 9: ALARM 4 (A4) ——— this bit indicates the status of the INPUT B ALARM A4.

1 ALARM
0 (no alarm)

BIT 10: NAK #4 (N4) ——— this bit is SET whenever the alarm goes from a (no alarm) to an ALARM condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK.

1 NOT ACKNOWLEDGED
0 (acknowledged)

BIT 11: ENABLED #4 (E4) - this bit indicates that INPUT B ALARM A4 has been ENABLED.

1 ENABLED
0 (not enabled)

BIT 12: OUT OF SERVICE (OS) - this bit indicates that all the INPUT B alarms are OUT OF SERVICE.

1 OUT OF SERVICE
0 (normal)

BITS 13-15: ———— not used - set to "0"

Changes can be made to status word 14 by sending a 16-bit word with a *1* in the BIT position(s) to be changed along with a "MASK ON" or "MASK OFF" command. Changes can be made while the station is in LOCAL but the command source must match the CONSOLE/COMPUTER status bits (e.g. ref. status word 03).

BIT 0: Changes to this bit will be ignored.
BIT 1: A "MASK OFF" will ACKNOWLEDGE alarm #1.
BIT 2: A "MASK ON" will ENABLE alarm #1 and a "MASK OFF" will DISABLE it.
BIT 3: Changes to this bit will be ignored.
BIT 4: A "MASK OFF" will ACKNOWLEDGE alarm #2.
BIT 5: A "MASK ON" will ENABLE alarm #2 and a "MASK OFF" will DISABLE it.
BIT 6: Changes to this bit will be ignored.
BIT 7: A "MASK OFF" will ACKNOWLEDGE alarm #3.
BIT 8: A "MASK ON" will ENABLE alarm #3 and a "MASK OFF" will DISABLE it.
BIT 9: Changes to this bit will be ignored.
BIT 10: A "MASK OFF" will ACKNOWLEDGE alarm #4.
BIT 11: A "MASK ON" will ENABLE alarm #4 and a "MASK OFF" will DISABLE it.
BIT 12: A "MASK ON" puts all INPUT B LINK ALARMS for "OUT OF SERVICE" and a "MASK OFF" puts them into normal operation.
BITS 13-15: Changes to these bits will be ignored.
CHANNEL 14, PARAMETER 02 - INPUT B A1 LIMIT - The A1 alarm limit has a valid range of -3.3% to 103.3%. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all data associated with parameters 2 thru 5.

a) $0000 - $0FF (A1 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FF (-3.3% to 103.3%)

CHANNEL 14, PARAMETER 03 - INPUT B A2 LIMIT - The A2 alarm limit has a valid range of -3.3% to 103.3%.

a) $0000 - $0FF (A2 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FF (-3.3% to 103.3%)

CHANNEL 14, PARAMETER 04 - INPUT B A3 LIMIT - The A3 alarm limit has a valid range of -3.3% to 103.3%.

a) $0000 - $0FF (A3 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FF (-3.3% to 103.3%)

CHANNEL 14, PARAMETER 05 - INPUT B A4 LIMIT - The A4 alarm limit has a valid range of -3.3% to 103.3%.

a) $0000 - $0FF (A4 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FF (-3.3% to 103.3%)

CHANNEL 14, PARAMETER 06 - INPUT B A1 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A1. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all data associated with parameters 6 thru 9.

Changes can be made to alarm #1 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

<table>
<thead>
<tr>
<th>BITS</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
LOCAL INSTRUMENT LINK COMMUNICATIONS

BITS: 4 3
0 0 - 0.1% alarm deadband
0 1 - 0.5% alarm deadband
1 0 - 1.0% alarm deadband
1 1 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL 14, PARAMETER 07 - INPUT B A2 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A2.

Changes can be made to alarm #2 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm
1 1 1 - no alarm action required.

BITS: 4 3
0 0 - 0.1% alarm deadband
0 1 - 0.5% alarm deadband
1 0 - 1.0% alarm deadband
1 1 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN

March 1995
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL 14, PARAMETER 08 - INPUT B A3 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A3.

Changes can be made to alarm #3 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm
1 1 1 - no alarm action required.

BITS: 4 3
0 0 0 - 0.1% alarm deadband
0 1 0 - 0.5% alarm deadband
1 0 0 - 1.0% alarm deadband
1 1 0 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
LOCAL INSTRUMENT LINK COMMUNICATIONS

1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL 14, PARAMETER 09 - INPUT B A4 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A4.

Changes can be made to alarm #4 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm
1 1 1 - no alarm action required.

BITS: 4 3
0 0 - 0.1% alarm deadband
0 1 - 0.5% alarm deadband
1 0 - 1.0% alarm deadband
1 1 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL 14, PARAMETER 256 - Global Parameter Data Type

7 ALARM STATUS WORD ($0007)
CHANNEL 15, PARAMETER 01 - CHANNEL B STATUS - STATUS WORD 15

<table>
<thead>
<tr>
<th>BIT</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>09</th>
<th>08</th>
<th>07</th>
<th>06</th>
<th>05</th>
<th>04</th>
<th>03</th>
<th>02</th>
<th>01</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>"1"</td>
<td>--</td>
<td>--</td>
<td>CC</td>
<td>OS</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>CM</td>
<td>CN</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>L</td>
</tr>
<tr>
<td>"0"</td>
<td>--</td>
</tr>
</tbody>
</table>

BIT 0: ------------------------ not used - set to "0"

BIT 1: LOCAL (L) ----------------- this bit indicates the source of operational control (i.e. the position of the C/L switch on the operator's panel). It can be changed by the operator by pushing the C/L button. A similar action can take place over the LINK. (Note: a logic "0" indicates non-local control and bits 4 & 5 will indicate the exact source.)

| "1" | LOCAL |
| "0" | (not local) |

BITS 2-3: ---------------------- not used - set to "0"

BIT 4: CONSOLE (CN) --- this bit indicates that the source of operational control is a console.

| "1" | CONSOLE |
| "0" | (not console) |

BIT 5: COMPUTER (CM) this bit indicates that the source of operational control is a computer.

| "1" | COMPUTER |
| "0" | (not computer) |

BITS 6-11: ---------------------- not used - set to "0"

BIT 12: OUT OF SERVICE (OS) this bit indicates that all the Channel B LINK alarms are OUT OF SERVICE.

| "1" | OUT OF SERVICE |
| "0" | (normal) |

BIT 13: CONFIGURED CHANNEL (CC) this bit indicates FB98 input HINB is configured.

| "1" | HINA CONFIGURED |
| "0" | (HINA not configured) |

BITS 14-15: ---------------------- not used - set to "0"

Changes can be made to Channel B Status Word by sending a 16-bit word with a "1" ONLY in the BIT position to be changed along with a "MASK ON" or "MASK OFF" command. The command source to change BITS 1, 4, or 5 should be identified as ANYSOURCE, while for BIT 12 it must match the station mode (i.e. CONSOLE/COMPUTER).

BIT 0: Changes to this bit will be ignored.
BIT 1: A "MASK ON" will set the operational control source as LOCAL (L).
BIT 2: Changes to this bit will be ignored.
BIT 3: Changes to this bit will be ignored.
BIT 4: A "MASK ON" will set the operational control source as CONSOLE (C) and clear bit 1 & bit 5.
BIT 5: A "MASK ON" will set the operational control source as COMPUTER (C) and clear bit 1 & bit 4.
BITS 6 11: Changes to these bits will be ignored.
BIT 12: A "MASK ON" puts all CHANNEL B LINK ALARMS "OUT OF SERVICE" and a "MASK OFF" puts them into normal operation.
BITS 13-15: Changes to these bits will be ignored.

CHANNEL 15, PARAMETER 256 - Global Parameter Data Type

March 1995

2-39
The following parameters are common for DISPLAY POINT NO. 1 thru DISPLAY POINT NO. 24. Therefore, parameters are only listed once with items that change with each display identified with a [D] (e.g. CHANNEL 3 x D + 13 = CHANNEL 16 for DISPLAY POINT 01.

CHANNEL [3xD+13], PARAMETER 01 - POINT [D] VARIABLE - The variable defined by configuration of FB[D].

CHANNEL [3xD+13], PARAMETER 02 - FPV - The Most Significant Word of the 32-bit IEEE floating point representation of the Process Variable as displayed in direct engineering units on the operator's panel. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with both parameter 02 & 03.

CHANNEL [3xD+13], PARAMETER 03 - FPV - The Least Significant Word of the 32-bit IEEE floating point representation of the Process Variable as displayed in direct engineering units on the operator's panel.

CHANNEL [3xD+13], PARAMETER 04 - PTN - Characters 1 & 2 of the Point No. [D] Tag Name as entered during configuration of function block FB[D]. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 04 thru 09.

a) $**++ - ** = $20 to $5E ASCII code for character 1
++ = $20 to $5E ASCII code for character 2

CHANNEL [3xD+13], PARAMETER 05 - PTN - Characters 3 & 4 of the Point No. [D] Tag Name as entered during configuration of function block FB[D].

a) $**++ - ** = $20 to $5E ASCII code for character 3
++ = $20 to $5E ASCII code for character 4

CHANNEL [3xD+13], PARAMETER 06 - PTN - Characters 5 & 6 of the Point No. [D] Tag Name as entered during configuration of function block FB[D].

a) $**++ - ** = $20 to $5E ASCII code for character 5
++ = $20 to $5E ASCII code for character 6

CHANNEL [3xD+13], PARAMETER 07 - PTN - Characters 7 & 8 of the Point No. [D] Tag Name as entered during configuration of function block FB[D].

a) $**++ - ** = $20 to $5E ASCII code for character 7
++ = $20 to $5E ASCII code for character 8

CHANNEL [3xD+13], PARAMETER 08 - PTN - Characters 9 & 10 of the Point No. [D] Tag Name as entered during configuration of function block FB[D].

a) $**++ - ** = $20 to $5E ASCII code for character 9
++ = $20 to $5E ASCII code for character 10

CHANNEL [3xD+13], PARAMETER 09 - PTN - Characters 11 & 12 of the Point No. [D] Tag Name as entered during configuration of function block FB[D].

a) $**++ - ** = $20 to $5E ASCII code for character 11
++ = $20 to $5E ASCII code for character 12

CHANNEL [3xD+13], PARAMETER 10 - PRU - Characters 1 & 2 of the Point No. [D] Eng. Range Units entered during configuration of function block FB[D]. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 10 and 11.

a) $**++ - ** = $20 to $5E ASCII code for character 1
++ = $20 to $5E ASCII code for character 2
CHANNEL [3xD+13], PARAMETER 11 - PRU - Characters 3 & 4 of the Point No. [D] Eng. Range Units entered during configuration of function block FB[D].

- \$**++ - ** = $20 to $5E ASCII code for character 3
- ++ = $20 to $5E ASCII code for character 4

CHANNEL [3xD+13], PARAMETER 12 - PRH - The 16-bit 2's complement integer of the High Range value for Point No. [D] entered during configuration of function block FB[D]. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 12 thru 14.

- $FFFF - $B6C2 (DRH = -1 to -18750)
- $0000 - $493E (DRH = 0 to 18750)

CHANNEL [3xD+13], PARAMETER 13 - PRL - The 16-bit 2's complement integer of the Low Range value for Point No. [D] entered during configuration of function block FB[D].

- $FFFF - $B6C2 (DRL = -1 to -18750)
- $0000 - $493E (DRL = 0 to 18750)

CHANNEL [3xD+13], PARAMETER 14 - DPP - The Decimal Point Position of Point No. [D] as entered during configuration of function block FB[D].

- $0000 - (DPP = 0) [0 0 0 0 0]
- $0001 - (DPP = 1) [0 0 0 0 0]
- $0002 - (DPP = 2) [0 0 0 0 0]
- $0003 - (DPP = 3) [0 0 0 0 0]
- $0004 - (DPP = 4) [0 0 0 0 0]

CHANNEL [3xD+13], PARAMETER 256 - Global Parameter Data Type

101 CHANNEL VARIABLE ($0065)

CHANNEL [3xD+14], PARAMETER 01 - POINT NO. [D] ALARM STATUS - STATUS WORD [2xD+14]

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

- "1" - - - - OS E4 N4 A4 E3 N3 A3 E2 N2 A2 E1 N1 A1
- "0" - - - - - - - - - - - - - - - - - -

BIT 0: ALARM 1 (A1) ------ this bit indicates the status of the DISPLAY NO. [D] ALARM A1.

- "1" ALARM
- "0" (no alarm)

BIT 1: NAK #1 (N1) ------- this bit is SET whenever the alarm goes from a (no alarm) to an alarm condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK or when a flashing A1 alarm is acknowledged locally at the station.

- a) The flasher is acknowledged using the "ACK" button on the operator's panel or using input (INA) to FB32.
 - "1" NOT ACKNOWLEDGED
 - "0" (acknowledged)

BIT 2: ENABLED #1 (E1) - this bit indicates that DISPLAY [D] ALARM A1 has been ENABLED.

- "1" ENABLED
- "0" (not enabled)

BIT 3: ALARM 2 (A2) ------ this bit indicates the status of the DISPLAY [D] ALARM A2.

- "1" ALARM
LOCAL INSTRUMENT LINK COMMUNICATIONS

"0* (no alarm)

BIT 4: NAK #2 (N2) ------- this bit is SET whenever the alarm goes from a (no alarm) to an ALARM condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK or when a flashing A2 alarm is acknowledged locally at the station.

 a) The flasher is acknowledged using the "ACK" button on the operator's panel or using input (INA) to FB32.

 "1* NOT ACKNOWLEDGED
 "0* (acknowledged)

BIT 5: ENABLED #2 (E2) - this bit indicates that DISPLAY [D] ALARM A2 has been ENABLED.

 "1* ENABLED
 "0* (not enabled)

BIT 6: ALARM 3 (A3) ------ this bit indicates the status of the DISPLAY [D] A ALARM A3.

 "1* ALARM
 "0* (no alarm)

BIT 7: NAK #3 (N3) ------- this bit is SET whenever the alarm goes from a (no alarm) to an ALARM condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK or when a flashing A3 alarm is acknowledged locally at the station.

 a) The flasher is acknowledged using the "ACK" button on the operator's panel or using input (INA) to FB32.

 "1* NOT ACKNOWLEDGED
 "0* (acknowledged)

BIT 8: ENABLED #3 (E3) - this bit indicates that DISPLAY [D] ALARM A3 has been ENABLED.

 "1* ENABLED
 "0* (not enabled)

BIT 9: ALARM 4 (A4) ------ this bit indicates the status of the DISPLAY [D] ALARM A4.

 "1* ALARM
 "0* (no alarm)

BIT 10: NAK #4 (N4) ------ this bit is SET whenever the alarm goes from a (no alarm) to an ALARM condition. It will also be SET when the alarm goes to a (no alarm) condition if RINGBACK was selected in configuration. It can be RESET over the LINK or when a flashing A4 alarm is acknowledged locally at the station.

 a) The flasher is acknowledged using the "ACK" button on the operator's panel or using input (INA) to FB32.

 "1* NOT ACKNOWLEDGED
 "0* (acknowledged)

BIT 11: ENABLED #4 (E4) - this bit indicates that DISPLAY [D] ALARM A4 has been ENABLED.

 "1* ENABLED
 "0* (not enabled)

BIT 12: OUT OF SERVICE (OS) - this bit indicates that all the DISPLAY [D] A alarms are OUT OF SERVICE.

 "1* OUT OF SERVICE
"0" (normal)

BITS 13-15: not used - set to "0"

Changes can be made to status word [2xD+14] by sending a 16-bit word with a "1" in the BIT position(s) to be changed along with a "MASK ON" or "MASK OFF" command. Changes can be made while the station is in LOCAL but the command source must match the CONSOLE/COMPUTER status bits (e.g. ref. status word 03).

BIT 0: Changes to this bit will be ignored.
BIT 1: A "MASK OFF" will ACKNOWLEDGE alarm #1.
BIT 2: A "MASK ON" will ENABLE alarm #1 and a "MASK OFF" will DISABLE it.
BIT 3: Changes to this bit will be ignored.
BIT 4: A "MASK OFF" will ACKNOWLEDGE alarm #2.
BIT 5: A "MASK ON" will ENABLE alarm #2 and a "MASK OFF" will DISABLE it.
BIT 6: Changes to this bit will be ignored.
BIT 7: A "MASK OFF" will ACKNOWLEDGE alarm #3.
BIT 8: A "MASK ON" will ENABLE alarm #3 and a "MASK OFF" will DISABLE it.
BIT 9: Changes to this bit will be ignored.
BIT 10: A "MASK OFF" will ACKNOWLEDGE alarm #4.
BIT 11: A "MASK ON" will ENABLE alarm #4 and a "MASK OFF" will DISABLE it.
BIT 12: A "MASK ON" puts all LINK ALARMS "OUT OF SERVICE" and a "MASK OFF" puts them into normal operation.

BITS 13-15: Changes to these bits will be ignored.

CHANNEL [3xD+14], PARAMETER 02 - POINT NO. [D] A1 LIMIT: The A1 alarm limit has a valid range of -3.3% to 103.3%.
A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all data associated with parameters 2 thru 5.

a) $0000 - $0FFF (A1 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM and also SA1 in FB[D]. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FFF (-3.3% to 103.3%)

CHANNEL [3xD+14], PARAMETER 03 - POINT NO. [D] A2 LIMIT: The A2 alarm limit has a valid range of -3.3% to 103.3%.

a) $0000 - $0FFF (A2 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM and also SA2 in FB[D]. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FFF (-3.3% to 103.3%)

CHANNEL [3xD+14], PARAMETER 04 - POINT NO. [D] A3 LIMIT: The A3 alarm limit has a valid range of -3.3% to 103.3%.

a) $0000 - $0FFF (A3 = -3.3% to 103.3%)

Changes to this parameter will affect the specified LINK ALARM and also SA3 in FB[D]. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FFF (-3.3% to 103.3%)

CHANNEL [3xD+14], PARAMETER 05 - POINT NO. [D] A4 LIMIT: The A4 alarm limit has a valid range of -3.3% to 103.3%.

a) $0000 - $0FFF (A4 = -3.3% to 103.3%)

March 1995
Changes to this parameter will affect the specified LINK ALARM and also SA4 in FB[D]. Changes can only be made in the "C" mode [i.e. command source matches station mode (CONSOLE/COMPUTER)] and will be entered as follows:

1) $0000 - $0FFF (-3.3% to 103.3%)

CHANNEL [3xD+14], PARAMETER 06 - POINT NO. [D] A1 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A1. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all data associated with parameters 6 thru 9.

Changes can be made to alarm #1 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm
1 1 1 - no alarm action required.

BITS: 4 3
0 0 - 0.1% alarm deadband
0 1 - 0.5% alarm deadband
1 0 - 1.0% alarm deadband
1 1 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL [3xD+14], PARAMETER 07 - POINT NO. [D] A2 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A2.
Changes can be made to alarm #2 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm
1 1 1 - no alarm action required.

BITS: 4 3
0 0 - 0.1% alarm deadband
0 1 - 0.5% alarm deadband
1 0 - 1.0% alarm deadband
1 1 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL [3xD+14], PARAMETER 08 - POINT NO. [D] A3 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A3.

Changes can be made to alarm #3 while the station is in the "C" mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm

March 1995
LOCAL INSTRUMENT LINK COMMUNICATIONS

1 1 1 - no alarm action required.

BITS: 4 3
0 0 - 0.1% alarm deadband
0 1 - 0.5% alarm deadband
1 0 - 1.0% alarm deadband
1 1 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BITS: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BITS: 12 thru 15 - changes to these bits will be ignored.

CHANNEL [3xD+14], PARAMETER 09 - POINT NO. [D] A4 TYPE WORD - This is a 16 bit multi-discrete word that defines the operations to be performed by alarm A4.

Changes can be made to alarm #4 while the station is in the *C* mode [i.e. command source matches the station mode (CONSOLE/COMPUTER)] by sending a 16-bit word to this parameter. Words will be decoded as:

BITS: 2 1 0
0 0 0 - no alarm action required
0 0 1 - HIGH alarm
0 1 0 - LOW alarm
0 1 1 - no alarm action required
1 0 0 - no alarm action required
1 0 1 - no alarm action required
1 1 0 - OUT OF RANGE alarm
1 1 1 - no alarm action required.

BITS: 4 3
0 0 - 0.1% alarm deadband
0 1 - 0.5% alarm deadband
1 0 - 1.0% alarm deadband
1 1 - 5.0% alarm deadband

BITS: 7 6 5
0 0 0 - 0.0 seconds - delay time IN
0 0 1 - 0.4 seconds - delay time IN
0 1 0 - 1.0 seconds - delay time IN

March 1995
0 1 1 - 2.0 seconds - delay time IN
1 0 0 - 5.0 seconds - delay time IN
1 0 1 - 15.0 seconds - delay time IN
1 1 0 - 30.0 seconds - delay time IN
1 1 1 - 60.0 seconds - delay time IN

BIT: 10 9 8
0 0 0 - 0.0 seconds - delay time OUT
0 0 1 - 0.4 seconds - delay time OUT
0 1 0 - 1.0 seconds - delay time OUT
0 1 1 - 2.0 seconds - delay time OUT
1 0 0 - 5.0 seconds - delay time OUT
1 0 1 - 15.0 seconds - delay time OUT
1 1 0 - 30.0 seconds - delay time OUT
1 1 1 - 60.0 seconds - delay time OUT

BIT: 11
0 - (ringback option not required)
1 - RINGBACK!

BIT: 12 thru 15 - changes to these bits will be ignored.

CHANNEL [3xD+14], PARAMETER 10 - Totalizer Counter MSW for Display Point [D]. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all the data associated with parameters 10 & 11.

$0000 - $05F5

CHANNEL [3xD+14], PARAMETER 11 - Totalizer Counter LSW for Display Point [D].

$0000 - $FFFF

CHANNEL [3xD+14], PARAMETER 12 - Characters 1 & 2 of the Totalizer Range Units for Display Point [D]. A MULTI-BYTE PARAMETER REQUEST sent to this parameter will cause the Model 363 to respond with all data associated with parameters 12 & 13.

$**++ ** = $20 to $5E ASCII code for character 1
++= $20 to $5E ASCII code for character 2

CHANNEL [3xD+14], PARAMETER 13 - Characters 3 & 4 of the Totalizer Range Units for Display Point [D].

$**++ ** = $20 to $5E ASCII code for character 3
++= $20 to $5E ASCII code for character 4

CHANNEL [3xD+14], PARAMETER 256 - Global Parameter Data Type

7 ALARM STATUS WORD ($0007)

CHANNEL [3xD+15], PARAMETER 01 - POINT [D] STATUS - STATUS WORD [2xD+15]

BIT 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
"1" - - CC OS - - - - - - - - CM CN - - L -
"O" -

BIT 0:------------------------ not used - set to "0"

BIT 1: LOCAL (L) ----------- This bit indicates the source of operational control (i.e. the position of the C/L switch on the operator's panel). It can be changed by the operator by pushing the C/L button. A similar action can take place over the LINK. (Note: a logic "O" indicates non-local control and bits 4 & 5 will indicate the exact source.)
LOCAL INSTRUMENT LINK COMMUNICATIONS

```
*1*       LOCAL
*0*       (not local)
```

BITS 2-3: not used - set to *0*

BIT 4: CONSOLE (CN) --- this bit indicates that the source of operational control is a console.

```
*1*       CONSOLE
*0*       (not console)
```

BIT 5: COMPUTER (CM) --- this bit indicates that the source of operational control is a computer.

```
*1*       COMPUTER
*0*       (not computer)
```

BITS 6-11: not used - set to *0*

BIT 12: OUT OF SERVICE (OS) - this bit indicates that all the Point [D] alarms are OUT OF SERVICE.

```
*1*       OUT OF SERVICE
*0*       (normal)
```

BIT 13: CONFIGURED CHANNEL (CC) - this bit indicates Point [D] is configured.

```
*1*       POINT D CONFIGURED
*0*       (Point D not configured)
```

BITS 14-15: not used - set to *0*

Changes can be made to Point D Status Word by sending a 16-bit word with a *1* ONLY in the BIT position to be changed along with a "MASK ON" or "MASK OFF" command. The command source to change BITS 1, 4, or 5 should be identified as ANYSOURCE, while for BIT 12 it must match the station mode (i.e. CONSOLE/COMPUTER).

BIT 0: Changes to this bit will be ignored.
BIT 1: A "MASK ON" will set the operational control source as LOCAL (L).
BIT 2: Changes to this bit will be ignored.
BIT 3: Changes to this bit will be ignored.
BIT 4: A "MASK ON" will set the operational control source as CONSOLE (C) and clear bit 1 & bit 5.
BIT 5: A "MASK ON" will set the operational control source as COMPUTER (C) and clear bit 1 & bit 4.
BITS 6-11: Changes to these bits will be ignored.
BIT 12: A "MASK ON" puts all POINT [D] ALARMS "OUT OF SERVICE" and a "MASK OFF" puts them into normal operation.
BITS 13-15: Changes to these bits will be ignored.

CHANNEL [3xD+15], PARAMETER 256 - Global Parameter Data Type

6 CHANNEL STATUS ($0006)

2.3 ERROR MESSAGES

2.3.1 Error Messages Over The Link

Error messages that appear in the status page of the Model 363 will be transmitted over the LINK in Channel 4, Parameter 1 as the hexadecimal equivalent of the error message. Also, when an NU status occurs, the hexadecimal equivalent of the output arrow (#100-#123) that is not-updating will be transmitted in this parameter.
TYPICAL LIL STATIONS

MODEL 352B A11N1F
SINGLE-LOOP DIGITAL CONTROLLER

MODEL 351 A21NNN
TRIPLE-LOOP DIGITAL CONTROLLER

MODEL 324
PROGRAMMABLE SEQUENCE CONTROLLER

MODEL 320 A21NNN
INDEPENDENT COMPUTER INTERFACE

MODEL 382E A21N1F
LOGIC & SEQUENCE CONTROLLER

MODEL 383V A21N1N
MULTI-POINT DISPLAY STATION

MODEL 352E A21N1F
SINGLE-LOOP DIGITAL CONTROLLER

LOCAL INSTRUMENT LINK (LIL)

(2) - (32) STATIONS

RS-232
OR
RS-422

1500 FT.

AS-1842-1 Local Instrument Link Minimum System
TYPICAL LIL STATIONS

MODEL 352B A11N1F
SINGLE-LOOP DIGITAL CONTROLLER

MODEL 351 A21NNN
TRIPLE-LOOP DIGITAL CONTROLLER

MODEL 324
PROGRAMMABLE SEQUENCE CONTROLLER

MODEL 320 A2NNN
INDEPENDENT COMPUTER INTERFACE

MODEL 321 A121RNN
EXPANSION SATELLITE

MODEL 382E A21N1F
LOGIC & SEQUENCE CONTROLLER

MODEL 383V A21N1N
MULTI-POINT DISPLAY STATION

MODEL 352E A21N1F
SINGLE-LOOP DIGITAL CONTROLLER

LOCAL INSTRUMENT LINK (LIL)

AS-1842-2 Local Instrument Link Expanded System
TYPICAL LIL STATIONS

MODEL 352B A11N1F
SINGLE-LOOP DIGITAL CONTROLLER

MODEL 351 A21NNN
TRIPLE-LOOP DIGITAL CONTROLLER

MODEL 324
PROGRAMMABLE SEQUENCE CONTROLLER

MODEL 320 A2NNN
INDEPENDENT COMPUTER INTERFACE

MODEL 321 A121RNN
EXPANSION SATELLITE

MODEL 382E A21N1F
LOGIC & SEQUENCE CONTROLLER

MODEL 383V A21N1N
MULTI-POINT DISPLAY STATION

MODEL 352E A21N1F
SINGLE-LOOP DIGITAL CONTROLLER

LOCAL INSTRUMENT LINK (LIL)

★ MODEL 321 A111RNN CAN ALSO BE USED IF NO. OF STATIONS < 31

AS-1842-3 Local Instrument Link Hi-Level Data Link Tie-In

March 1995
TABLE 2-2 LINK INTERFACE INFORMATION

<table>
<thead>
<tr>
<th>CH 1</th>
<th>SIZE $000F TO $00FF</th>
<th>BOARD STATUS SW01</th>
<th>SOFTWARE LEVEL MPU</th>
<th>SOFTWARE LEVEL LINK</th>
<th>SOFTWARE LEVEL INPUT CARD #1</th>
<th>SOFTWARE LEVEL INPUT CARD #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 2</td>
<td>TYPE $000A</td>
<td>←------ STATION ID (CID) →</td>
<td>DSN</td>
<td>←------ CONF. FILENAME →</td>
<td>FIRST CONF. SIZE REC.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
</tr>
<tr>
<td>CH 3</td>
<td>STAN STATUS SW02</td>
<td>←------ STATION TIME →</td>
<td>DAYS</td>
<td>HOURS</td>
<td>MIN</td>
<td>SEC</td>
</tr>
<tr>
<td>CH 4</td>
<td>ERROR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 5</td>
<td>FUNCTION BLOCK STATUS SW03</td>
<td>DISPLAY STAT #1 SW04</td>
<td>DISPLAY STAT #2 SW05</td>
<td>TIMER STATUS SW06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 6</td>
<td>PEN STATUS SW06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 7</td>
<td>TOT RESET STAT #1 SW07</td>
<td>TOT CONF STAT #1 SW08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 8</td>
<td>TOT RESET STAT #2 SW06</td>
<td>TOT CONF STAT #2 SW10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 9</td>
<td>PEN CONF STATUS SW11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 10</td>
<td>'A'</td>
<td>'100'</td>
<td>'101'</td>
<td>'102'</td>
<td>'103'</td>
<td>'104'</td>
</tr>
<tr>
<td>CH 11</td>
<td>'A'</td>
<td>ALARM STATUS SW12</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
</tr>
<tr>
<td>CH 12</td>
<td>'A'</td>
<td>CHANNEL STATUS SW13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 13</td>
<td>'B'</td>
<td>SM C#</td>
<td>SM C#</td>
<td>S4 C#</td>
<td>S5 C#</td>
<td>S6 C#</td>
</tr>
</tbody>
</table>

This notation represents a group of parameters that may be requested with a MULTI-BYTE PARAMETER REQUEST. These groupings may also be requested one parameter at a time with a RANDOM PARAMETER DATA REQUEST.
<table>
<thead>
<tr>
<th>CH 14</th>
<th>"B" ALARM STATUS SW14</th>
<th>PARM 1</th>
<th>PARM 2</th>
<th>PARM 3</th>
<th>PARM 4</th>
<th>PARM 5</th>
<th>PARM 6</th>
<th>PARM 7</th>
<th>PARM 8</th>
<th>PARM 9</th>
<th>PARM 10</th>
<th>PARM 11</th>
<th>PARM 12</th>
<th>PARM 13</th>
<th>PARM 14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 16</td>
<td>POINT #1</td>
<td>← IEEE →</td>
<td>← POINT #1 TAG NAME (DTN) →</td>
<td>← ENG (RU) →</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSW</td>
<td>LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 17</td>
<td>ALARM STATUS SW16</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>TOT.</td>
<td>COUNT</td>
<td>MSW</td>
<td>TOT.</td>
<td>COUNT</td>
<td>LSW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>COUNT</td>
<td>MSW</td>
<td>TOT.</td>
<td>COUNT</td>
<td>LSW</td>
<td></td>
</tr>
<tr>
<td>CH 18</td>
<td>POINT #1 STATUS SW17</td>
<td></td>
</tr>
<tr>
<td>CH 19</td>
<td>POINT #2</td>
<td>← IEEE →</td>
<td>← POINT #2 TAG NAME (DTN) →</td>
<td>← ENG (RU) →</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSW</td>
<td>LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/2</td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 20</td>
<td>ALARM STATUS SW18</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>TOT.</td>
<td>COUNT</td>
<td>MSW</td>
<td>TOT.</td>
<td>COUNT</td>
<td>LSW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>COUNT</td>
<td>MSW</td>
<td>TOT.</td>
<td>COUNT</td>
<td>LSW</td>
<td></td>
</tr>
<tr>
<td>CH 21</td>
<td>POINT #2 STATUS SW19</td>
<td></td>
</tr>
<tr>
<td>CH 22</td>
<td>POINT #3</td>
<td>← IEEE →</td>
<td>← POINT #3 TAG NAME (DTN) →</td>
<td>← ENG (RU) →</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSW</td>
<td>LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/2</td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 23</td>
<td>ALARM STATUS SW20</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>TOT.</td>
<td>COUNT</td>
<td>MSW</td>
<td>TOT.</td>
<td>COUNT</td>
<td>LSW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>COUNT</td>
<td>MSW</td>
<td>TOT.</td>
<td>COUNT</td>
<td>LSW</td>
<td></td>
</tr>
<tr>
<td>CH 24</td>
<td>POINT #3 STATUS SW21</td>
<td></td>
</tr>
<tr>
<td>CH 25</td>
<td>POINT #4</td>
<td>← IEEE →</td>
<td>← POINT #4 TAG NAME (DTN) →</td>
<td>← ENG (RU) →</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MSW</td>
<td>LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/2</td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 26</td>
<td>ALARM STATUS SW22</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>TOT.</td>
<td>COUNT</td>
<td>MSW</td>
<td>TOT.</td>
<td>COUNT</td>
<td>LSW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>COUNT</td>
<td>MSW</td>
<td>TOT.</td>
<td>COUNT</td>
<td>LSW</td>
<td></td>
</tr>
<tr>
<td>CH 27</td>
<td>POINT #4 STATUS SW23</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>POINT 5</td>
<td>POINT #5 TAG NAME (OTN)</td>
<td>ENG (RU)</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>--------------------------</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW LSW</td>
<td>1/2 3/4 5/6 7/8 9/10 11/12</td>
<td></td>
<td>1/2</td>
<td>3/4</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>ALARM STATUS SW24</td>
<td>A1 LIMIT A2 LIMIT A3 LIMIT A4 LIMIT A1 TYPE A2 TYPE A3 TYPE A4 TYPE TOT. COUNT MSW TOT. COUNT LSW TOT. (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>ALARM STATUS SW26</td>
<td>A1 LIMIT A2 LIMIT A3 LIMIT A4 LIMIT A1 TYPE A2 TYPE A3 TYPE A4 TYPE TOT. COUNT MSW TOT. COUNT LSW TOT. (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>ALARM STATUS SW27</td>
<td>A1 LIMIT A2 LIMIT A3 LIMIT A4 LIMIT A1 TYPE A2 TYPE A3 TYPE A4 TYPE TOT. COUNT MSW TOT. COUNT LSW TOT. (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>ALARM STATUS SW28</td>
<td>A1 LIMIT A2 LIMIT A3 LIMIT A4 LIMIT A1 TYPE A2 TYPE A3 TYPE A4 TYPE TOT. COUNT MSW TOT. COUNT LSW TOT. (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>ALARM STATUS SW29</td>
<td>A1 LIMIT A2 LIMIT A3 LIMIT A4 LIMIT A1 TYPE A2 TYPE A3 TYPE A4 TYPE TOT. COUNT MSW TOT. COUNT LSW TOT. (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>ALARM STATUS SW30</td>
<td>A1 LIMIT A2 LIMIT A3 LIMIT A4 LIMIT A1 TYPE A2 TYPE A3 TYPE A4 TYPE TOT. COUNT MSW TOT. COUNT LSW TOT. (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>ALARM STATUS SW31</td>
<td>A1 LIMIT A2 LIMIT A3 LIMIT A4 LIMIT A1 TYPE A2 TYPE A3 TYPE A4 TYPE TOT. COUNT MSW TOT. COUNT LSW TOT. (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>ALARM STATUS SW32</td>
<td>A1 LIMIT A2 LIMIT A3 LIMIT A4 LIMIT A1 TYPE A2 TYPE A3 TYPE A4 TYPE TOT. COUNT MSW TOT. COUNT LSW TOT. (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CH 42 POINT #9 STATUS SW93</td>
<td>PARM 1</td>
<td>PARM 2</td>
<td>PARM 3</td>
<td>PARM 4</td>
<td>PARM 5</td>
<td>PARM 6</td>
<td>PARM 7</td>
<td>PARM 8</td>
<td>PARM 9</td>
<td>PARM 10</td>
<td>PARM 11</td>
<td>PARM 12</td>
<td>PARM 13</td>
<td>PARM 14</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>CH 43 POINT #10</td>
<td>←IEEE →</td>
<td>←---- POINT #10 TAG NAME (DTN) ←----</td>
<td>← ENG (RU) →</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW94</td>
<td>MSW</td>
<td>LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td></td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 44 ALARM STATUS SW96</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
<td>A1 TYPE</td>
<td>A2 TYPE</td>
<td>A3 TYPE</td>
<td>A4 TYPE</td>
<td>TOT COUNT MSW</td>
<td>TOT COUNT LSW</td>
<td>←TOT (RU)→</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 45 POINT #10</td>
<td>←IEEE →</td>
<td>←---- POINT #11 TAG NAME (DTN) ←----</td>
<td>← ENG (RU) →</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW95</td>
<td>MSW</td>
<td>LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td></td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 46 ALARM STATUS SW96</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
<td>A1 TYPE</td>
<td>A2 TYPE</td>
<td>A3 TYPE</td>
<td>A4 TYPE</td>
<td>TOT COUNT MSW</td>
<td>TOT COUNT LSW</td>
<td>←TOT (RU)→</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 48 POINT #11</td>
<td>←IEEE →</td>
<td>←---- POINT #12 TAG NAME (DTN) ←----</td>
<td>← ENG (RU) →</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW96</td>
<td>MSW</td>
<td>LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td></td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 49 ALARM STATUS SW96</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
<td>A1 TYPE</td>
<td>A2 TYPE</td>
<td>A3 TYPE</td>
<td>A4 TYPE</td>
<td>TOT COUNT MSW</td>
<td>TOT COUNT LSW</td>
<td>←TOT (RU)→</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 50 POINT #12</td>
<td>←IEEE →</td>
<td>←---- POINT #13 TAG NAME (DTN) ←----</td>
<td>← ENG (RU) →</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW96</td>
<td>MSW</td>
<td>LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td></td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 52 ALARM STATUS SW96</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
<td>A1 TYPE</td>
<td>A2 TYPE</td>
<td>A3 TYPE</td>
<td>A4 TYPE</td>
<td>TOT COUNT MSW</td>
<td>TOT COUNT LSW</td>
<td>←TOT (RU)→</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 54 POINT #13</td>
<td>←IEEE →</td>
<td>←---- POINT #14 TAG NAME (DTN) ←----</td>
<td>← ENG (RU) →</td>
<td>RH</td>
<td>RL</td>
<td>DPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW96</td>
<td>MSW</td>
<td>LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td></td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

March 1995

2-55
TABLE 2-2 LINK INTERFACE INFORMATION (Cont'd)

<table>
<thead>
<tr>
<th>PARM 1</th>
<th>PARM 2</th>
<th>PARM 3</th>
<th>PARM 4</th>
<th>PARM 5</th>
<th>PARM 6</th>
<th>PARM 7</th>
<th>PARM 8</th>
<th>PARM 9</th>
<th>PARM 10</th>
<th>PARM 11</th>
<th>PARM 12</th>
<th>PARM 13</th>
<th>PARM 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 56</td>
<td>ALARM STATUS SW42</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
<td>A1 TYPE</td>
<td>A2 TYPE</td>
<td>A3 TYPE</td>
<td>A4 TYPE</td>
<td>TOT. COUNT MSW</td>
<td>TOT. COUNT LSW</td>
<td><TOT (RU)></td>
<td></td>
</tr>
<tr>
<td>CH 57</td>
<td>POINT #14 STATUS SW43</td>
<td></td>
</tr>
<tr>
<td>CH 58</td>
<td>POINT #15</td>
<td><--- IEEE --<</td>
<td><--- POINT #15 TAG NAME (DTN) --></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 59</td>
<td>ALARM STATUS SW44</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
<td>A1 TYPE</td>
<td>A2 TYPE</td>
<td>A3 TYPE</td>
<td>A4 TYPE</td>
<td>TOT. COUNT MSW</td>
<td>TOT. COUNT LSW</td>
<td><TOT (RU)></td>
<td></td>
</tr>
<tr>
<td>CH 60</td>
<td>POINT #15 STATUS SW45</td>
<td></td>
</tr>
<tr>
<td>CH 61</td>
<td>POINT #16</td>
<td><--- IEEE --<</td>
<td><--- POINT #16 TAG NAME (DTN) --></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 62</td>
<td>ALARM STATUS SW46</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
<td>A1 TYPE</td>
<td>A2 TYPE</td>
<td>A3 TYPE</td>
<td>A4 TYPE</td>
<td>TOT. COUNT MSW</td>
<td>TOT. COUNT LSW</td>
<td><TOT (RU)></td>
<td></td>
</tr>
<tr>
<td>CH 63</td>
<td>POINT #16 STATUS SW47</td>
<td></td>
</tr>
<tr>
<td>CH 64</td>
<td>POINT #17</td>
<td><--- IEEE --<</td>
<td><--- POINT #17 TAG NAME (DTN) --></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 65</td>
<td>ALARM STATUS SW48</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
<td>A1 TYPE</td>
<td>A2 TYPE</td>
<td>A3 TYPE</td>
<td>A4 TYPE</td>
<td>TOT. COUNT MSW</td>
<td>TOT. COUNT LSW</td>
<td><TOT (RU)></td>
<td></td>
</tr>
<tr>
<td>CH 66</td>
<td>POINT #17 STATUS SW49</td>
<td></td>
</tr>
<tr>
<td>CH 67</td>
<td>POINT #18</td>
<td><--- IEEE --<</td>
<td><--- POINT #18 TAG NAME (DTN) --></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW LSW</td>
<td>1/2</td>
<td>3/4</td>
<td>5/6</td>
<td>7/8</td>
<td>9/10</td>
<td>11/12</td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 68</td>
<td>ALARM STATUS SW50</td>
<td>A1 LIMIT</td>
<td>A2 LIMIT</td>
<td>A3 LIMIT</td>
<td>A4 LIMIT</td>
<td>A1 TYPE</td>
<td>A2 TYPE</td>
<td>A3 TYPE</td>
<td>A4 TYPE</td>
<td>TOT. COUNT MSW</td>
<td>TOT. COUNT LSW</td>
<td><TOT (RU)></td>
<td></td>
</tr>
<tr>
<td>PARM</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>CH 69</td>
<td>POINT</td>
<td>STATUS</td>
<td>SW51</td>
<td></td>
</tr>
<tr>
<td>CH 70</td>
<td>POINT</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEEE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SW52</td>
<td></td>
</tr>
<tr>
<td>CH 71</td>
<td>ALARM</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>COUNT</td>
<td>COUNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 72</td>
<td>POINT</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>CH 73</td>
<td>POINT</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>CH 74</td>
<td>ALARM</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>COUNT</td>
<td>COUNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 75</td>
<td>POINT</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>CH 76</td>
<td>POINT</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>CH 77</td>
<td>ALARM</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>COUNT</td>
<td>COUNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 78</td>
<td>POINT</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>CH 79</td>
<td>POINT</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>CH 80</td>
<td>ALARM</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>COUNT</td>
<td>COUNT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH 81</td>
<td>POINT</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>CH 82</td>
<td>POINT</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2-2 LINK INTERFACE INFORMATION (Cont’d)
TABLE 2-2 LINK INTERFACE INFORMATION (Cont'd)

<table>
<thead>
<tr>
<th>CH</th>
<th>Status</th>
<th>PARM 1</th>
<th>PARM 2</th>
<th>PARM 3</th>
<th>PARM 4</th>
<th>PARM 5</th>
<th>PARM 6</th>
<th>PARM 7</th>
<th>PARM 8</th>
<th>PARM 9</th>
<th>PARM 10</th>
<th>PARM 11</th>
<th>PARM 12</th>
<th>PARM 13</th>
<th>PARM 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>Alarm</td>
<td></td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>TOT.</td>
<td>COUNT</td>
<td>COUNT</td>
<td>TOT (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td></td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>MSW</td>
<td>LSW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SW20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SW61</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IEEE</td>
<td>← →</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>← →</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Alarm</td>
<td></td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>TOT.</td>
<td>COUNT</td>
<td>COUNT</td>
<td>TOT (RU)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td></td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>LIMIT</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>TYPE</td>
<td>MSW</td>
<td>LSW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SW22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/2</td>
<td>3/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SW63</td>
<td></td>
</tr>
</tbody>
</table>

Additional Table

<table>
<thead>
<tr>
<th>CH</th>
<th>PARM 15</th>
<th>PARM 16</th>
<th>PARM 17</th>
<th>PARM 18</th>
<th>PARM 19</th>
<th>PARM 20</th>
<th>PARM 21</th>
<th>PARM 22</th>
<th>PARM 23</th>
<th>PARM 24</th>
<th>PARM 25</th>
<th>PARM 26</th>
<th>PARM 27</th>
<th>PARM 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>"113"</td>
<td>"114"</td>
<td>"115"</td>
<td>"116"</td>
<td>"117"</td>
<td>"118"</td>
<td>"119"</td>
<td>"120"</td>
<td>"121"</td>
<td>"122"</td>
<td>"123"</td>
<td>"124"</td>
<td>"125"</td>
<td>"126"</td>
</tr>
<tr>
<td>13</td>
<td>S#C#</td>
</tr>
</tbody>
</table>

Additional Table (continued on next page)

<table>
<thead>
<tr>
<th>CH</th>
<th>PARM 256</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GLOBAL DATA TYPE $0001</td>
</tr>
<tr>
<td>2</td>
<td>GLOBAL DATA TYPE $0002</td>
</tr>
<tr>
<td>3</td>
<td>GLOBAL DATA TYPE $0003</td>
</tr>
<tr>
<td>4</td>
<td>GLOBAL DATA TYPE $0004</td>
</tr>
<tr>
<td>5</td>
<td>GLOBAL DATA TYPE $0480</td>
</tr>
<tr>
<td>6</td>
<td>GLOBAL DATA TYPE $04C4</td>
</tr>
<tr>
<td>7</td>
<td>GLOBAL DATA TYPE $04BA</td>
</tr>
<tr>
<td>8</td>
<td>GLOBAL DATA TYPE $04BB</td>
</tr>
<tr>
<td>9</td>
<td>GLOBAL DATA TYPE $04C5</td>
</tr>
<tr>
<td>10</td>
<td>GLOBAL DATA TYPE $0064</td>
</tr>
<tr>
<td>11</td>
<td>GLOBAL DATA TYPE $0007</td>
</tr>
<tr>
<td>12</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>13</td>
<td>GLOBAL DATA TYPE $0004</td>
</tr>
<tr>
<td>14</td>
<td>GLOBAL DATA TYPE $0007</td>
</tr>
<tr>
<td>15</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>16</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>17</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>18</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>19</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>20</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>21</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>22</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>23</td>
<td>GLOBAL DATA TYPE $0007</td>
</tr>
<tr>
<td>24</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>25</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>26</td>
<td>GLOBAL DATA TYPE $0007</td>
</tr>
<tr>
<td>27</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>28</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
</tbody>
</table>

March 1995
<table>
<thead>
<tr>
<th></th>
<th>PARM 256</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 29</td>
<td>GLOBAL DATA TYPE $0007</td>
</tr>
<tr>
<td>CH 30</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>CH 31</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>CH 32</td>
<td>GLOBAL DATA TYPE $0007</td>
</tr>
<tr>
<td>CH 33</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>CH 34</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>CH 35</td>
<td>GLOBAL DATA TYPE $0007</td>
</tr>
<tr>
<td>CH 36</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>CH 37</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>CH 38</td>
<td>GLOBAL DATA TYPE $0007</td>
</tr>
<tr>
<td>CH 39</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>CH 40</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>CH 41</td>
<td>GLOBAL DATA TYPE $0007</td>
</tr>
<tr>
<td>CH 42</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
<tr>
<td>CH 43</td>
<td>GLOBAL DATA TYPE $0006</td>
</tr>
</tbody>
</table>

TABLE 2-2 LINK INTERFACE INFORMATION (Cont'd)