Process Instrumentation

Field Instruments for Process Automation
July 2012 Supplement
Introduction

The Process Instrumentation & Analytics Business Segment of Siemens Industry, Inc. is a leader in providing innovative solutions to process instrumentation and control challenges. It is the operational center for Siemens' process instrumentation and control business in North America. The Process Instrumentation business provides a complete line of reliable measurement and control products, including: transmitters for level, pressure, temperature, and flow; loop controllers; valve instrumentation products, regulators and relays; process protection instruments; weigh feeders and belt scales. Siemens Process Instrumentation solutions help increase productivity and plant safety, reduce time-to-market and improve product quality across the process industries, such as chemical, pharmaceutical, bio-pharmaceutical, oil & gas, water and wastewater treatment, mining, pulp & paper and refining.

This catalog supplement includes only those items manufactured in Spring House, sold here in the US, and not covered in the Siemens Field Instruments FI 01 catalog. If you do not find the product you are looking for in this supplement, please contact our factory for more information. We will be happy to connect you with a sales representative in your area that covers the products and services that you need.

Siemens Industry, Inc.
Process Instrumentation
1201 Sumneytown Pike
PO Box 900
Spring House, PA 19477
215-646-7400

Siemens Industry, Inc. assures no liability for errors or omissions in this and any attached documents or for the application and use of information included in this and any attached documents. The information herein is subject to change without notice.
Table of Contents

Introduction ... 1.0

Introduction .. 1.1

Table of Contents .. 1.2

Control Solutions .. 2.0

Controllers ... 2.1
- Model 353 Process Automation Controller ... 2.1
- ilconfig™ Controller Configuration Utility ... 2.6
- Model 353 Ethernet Remote I/O .. 2.7
- ilware OPC Server .. 2.9
- ilware for 353 Series Controllers .. 2.10
- ilstation for 353 Series Controllers ... 2.12

Valve Control Products .. 3.0

Valve Positioners ... 3.1
- Series 760 P/E Valve Positioner ... 3.1
- Series 73 Built-In Valve Positioner .. 3.7
- Series 74 Valve Positioner ... 3.9

Transducers .. 3.12
- Models 77 and 771 Current-to-Pneumatic Transducers ... 3.12

Regulators and Relays .. 4.0

Regulators ... 4.1
- Models 40, 41, and 42 Precision Pressure Regulators .. 4.1
- Model 91-HF Filter-Regulator ... 4.7
- Model 2306 Instrument Air Filter ... 4.9

Relays .. 4.10
- Series 61 Booster Relays ... 4.10
- Series 62 Constant-Differential Relays .. 4.14
- Series 63 Constant Differential Flow Controllers .. 4.16
- Model 66 Amplifying and Reducing Relays ... 4.18
- Model 661 Amplifying Relays with Bias .. 4.20
Controllers

Model 353 Process Automation Controller

with Ethernet Communication (Design Level B)

Introduction

Features & Benefits

- Affords easy integration with and migration to existing systems
- Multiple loop capabilities for indication, control, logic, or sequencing accommodate comprehensive process control needs
- Scalable hardware provides lower entry costs, without limiting future needs
- Full configuration capability via front faceplate push-buttons allows quick field changes without requiring additional tools
- Ethernet communication is standard, providing peer-to-peer communications.
- RS485 MODBUS® network connection allows multi-drop wiring for operation, monitoring, troubleshooting, or configuration from a system workstation
- Front panel PC connection accommodates local configuration, monitoring, or troubleshooting using the graphical configuration software
- Real Time Clock provides status output based on time of day. Removeable configuration media stores a complete backup copy of the control strategy configuration
- Factory Configured Options (FCOs) facilitate fast configuration for common applications
- Password protection provides individual security for various plant personnel
- Graphical configuration program provides a choice of function block or ladder logic configuration
- Short case design allows mounting in 12" deep cabinets
- Coated circuit boards ensure reliable operation and environmental integrity

Description

The Model 353 Process Automation Controller is a stand-alone, microprocessor-based industrial controller designed for a broad range of process applications. It can serve as a simple single-loop controller or as a multi-loop controller with complete control and logic functions for a small unit batch or continuous process. The Model 353’s standard Ethernet communication enables it to function as an integral element in a plant system.

Loops are configured for control, sequence, or logic as needed within the Model 353. Each configured loop can have a virtual operator display that is viewed locally using the LOOP button on the faceplate and is mapped to network communication for a plant operator station. Alarm management is handled using the L (Loop) & S (Station) indicator lights along with the priority assignments and flashing options of each alarm.

User defined pushbuttons in each loop can be used for traditional functions, such as Console/Local, External/Internal Switching or individual user requirements, such as Start, Stop or Jog. Multiple variables are displayed on the operator faceplate and viewed using the D button. User defined units assigned to each variable are displayed via the UNITS button. Complete configuration of the Model 353 is available using buttons located behind the flipdown ID door.

A built-in library of preconfigured control strategies (FCOs) enable selection of common basic controller types for quick field set-up. A large selection of reusable function blocks enable simple changes to FCOs or the design of a custom control strategy to meet the needs of specific process control application. The Model 353 Configuration Utility accommodates design, downloading, uploading, and on-line monitoring capabilities for improved management of controller configurations. In addition, sequencer/logic loops can be configured and monitored on-line in ladder diagram format for those more familiar with this language.
Controllers
Model 353 Process Automation Controller
with Ethernet Communication (Design Level B)

Specifications

Electrical & Environmental

Power Supply
Standard: 120/240 Vac (85 to 264 Vac); 47 to 63 Hz
Optional: 24 Vdc, +20%, -15%

Power Requirements
25 Watts, 40 VA (max.)

2-Wire Transmitter Power
Voltage: 25 Vdc ±3V
Current: 120 mA, short circuit protected

Hazardous Area Approvals Pending
FM/CSA: Class I, Division 2, Groups A, B, C & D
ABS
CE
(Consult Siemens for current approvals)

Ambient Temperature Range
Operating: 32 to 122°F (0 to 50°C)
Storage: -40 to 185°F (-40 to 85°C)

Climate Conditions - IEC654-1
Class B3 - Standard Mounting
Class D1 - Installed per instructions in Class D1 enclosure

Electrostatic Discharge
IEC 801-2

RFI Protection
IEC 801-3

Electrical Transients
IEC 801-4

Net Weight
6 lbs.

Heat Dissipation
80 BTU/Hr.

Scan Time
Varies with configuration: 20 msec (minimum)

Inputs

Analog Inputs (non-isolated)
1-5 Vdc, 4-20 mA with included 250 resistor
MPU Controller Board: Qty 3
I/O Expander Board: Qty 1

Digital Inputs (isolated)
0-1 Vdc OFF, 15-30 Vdc ON
MPU Controller Board: Qty 3
I/O Expander Board: Qty 1

Analog Input, Universal (isolated)
Thermocouple: J, K, T, E, S, R, B & N
RTD: DIN 43760, US (NBS126), JIS C-1604
Slidewire: 500-5000
Ohms: 0-5000
Millivolt: Narrow: -19.0 to 19.0 mV; Wide:-30.0 to 77.0 mV
I/O Expander Board: Qty 2

Digital/Frequency Input, Universal (isolated)
Frequency Range: 0 to 25,000 Hz
Minimum Operating Frequency: 0.05 Hz
ON Voltage: 4-30 Vdc
OFF Voltage: 0-1 Vdc
Input Current: <5 mA @ 30 Vdc
I/O Expander Board: Qty 2

Outputs

Analog Outputs (non-isolated)
4-20 mA into 800 ohms (max.)
MPU Controller Board: Qty 2
I/O Expander Board: Qty 1

Digital Outputs (non-isolated)
Open Collector Transistor (emitter @ station common)
Load Voltage: 30Vdc (maximum)
Load Current: 100 mA (maximum)
Off State Leakage Current: <200 A @ 30 Vdc
MPU Controller Board: Qty 2

Relay Outputs (SPDT)
Contact Rating: 5A @ 120 Vac, 2.5 A @ 230 Vac, Resistive Load
Minimum Current: 100 mA @ 10 mVdc; 150 mA @ 50 mVac
I/O Expander Board: Qty 2

Optional Boards
Local I/O Expander

Communication
Front configuration port: RS232 MODBUS
Rear port: RS485 MODBUS
Ethernet: MODBUS/TCP

Standard Configuration

Nine of the most common control strategies have been stored in a built-in library and can be selected with a single pushbutton entry. These control strategies, which can be customized to accommodate individual needs, are:

- Single-Loop Controller with Tracking Setpoint
- Single-Loop Controller with Fixed Setpoint
- Ratio Set Controller with Operator Setpoint Limits
- Single-Loop Controller with Operator Setpoint Limits
- Cascade Loop Controller
- Cascade Loop Controller with Operator Setpoint Limits
- External Set Controller with Tracking Setpoint
- External Setpoint with Fixed Setpoint
- Dual Loop controller
Function Blocks

Control strategies within the Model 353 are configured using the following function blocks, which are stored in memory. The number and type of I/O function blocks available in the Model 353 depend on the installed hardware, and when available, can be used as needed within a configured loop. Loop function blocks can be used in the quantities indicated within each loop. Each configured loop can contain one operator display block & one controller block.

Station Hardware I/O
- AIN1-4 - Analog Input
- AINU1-2 - Analog Input Universal
- AOUT1-3 - Analog Output
- DIN1-4 - Digital Input
- DINU1-2 - Digital Input, Universal
- DOUT1-2 - Digital Output
- ROUT1-2 - Relay Output

Ethernet Peer-To-Peer I/O
- AIE01-32 - Analog Input Ethernet
- AOE01-32 - Analog Output Ethernet
- AWE01-32 - Analog Write Ethernet
- CIE01-32 - Coil Input Ethernet
- CWE01-32 - Coil Write Ethernet
- DIE01-32 - Digital Input Ethernet
- DOE01-32 - Digital Output Ethernet
- DWE01-32 - Digital Write Ethernet

Loop Function Blocks
- A/M - Auto/Manual
- ACS01-99 - ARC Cosine
- ADD01-99 - Addition
- AGA3 - Orifice Metering of Natural Gas
- AGA7 - Measurement of Gas by Turbine Meters
- AGA8 - Compressibility Factors of Natural Gas
- ALARM - Alarm
- AND01-99 - AND Logic
- ASN01-99 - ARC Sine
- ATD01-05 - Analog Trend Display
- ATN01-09 - Arc Tangent
- BATOT - Batch Totalizer
- BATSW - Batch Switch
- BIAS - Bias
- CHR01-99 - Characterizer
- CMP01-99 - Comparator
- COS01-99 - Cosine
- DAM01-99 - Deviation Amplifier
- DIV01-99 - Division
- DNC01-99 - Divide by N Counter
- DTM01-99 - Dead Time Table
- DYT01-99 - Delay Timer
- E/I - External/Internal Transfer
- ESL - Event Sequence Logger
- EXP01-99 - Natural Exponentiation
- EXT01-99 - Exponentiation
- FTG01-99 - Falling Edge Trigger
- GB01-99 - Gain & Bias
- HLD01-99 - Hold
- ID* - ID Controller
- LL01-99 - Lead/Lag
- LMT01-99 - Limit
- LN01-99 - Natural Logarithm
- LOG01-99 - Logarithm Base 10
- MTH01-99 - Math
- MUL01-99 - Multiplication
- NND01-99 - NAND Logic
- NOR01-99 - NOR Logic
- NOT01-99 - NOT Logic
- ODC* - Operator Display for Controllers
- ODS* - Operator Display for Sequencers
- ODA* - Operator Display for Analog
- ODD* - Operator Display for Discrete
- ODP* - Operator Display for Pushbutton
- ONOFF* - ON OFF Controller
- OR01-99 - OR Logic
- ORSL - Override Selector
- OST01-99 - One Shot Timer
- PB1SW - PB1 Switch
- PB2SW - PB2 Switch
- PB3SW - PB3 Switch
- PCOM - Phase Communication
- PD* - PD Controller
- PID* - PID Controller
- PIDAG* - PIDAG Controller
- PRSEQ - Program Sequencer
- QHD01-99 - Quicksel Hold
- RATIO - Ratio
- RCT01-99 - Repeat Cycle Timer
- RLM01-99 - Rate Limiter
- ROT01-99 - Retentive On Timer
- RSF01-99 - RS Flip-Flop
- RTG01-99 - Rising Edge Trigger
- RTT01-99 - Real Time Clock Trip
- SCL01-99 - Scaler
- SEL01-99 - Signal Selector
- SETPT - Setpoint
- SIN01-99 - Sine
- SPLIM - Setpoint Limit
- SRF01-99 - SR Flip-Flop
- SRT01-99 - Square Root
- SUB01-99 - Subtraction
- TAN01-99 - Tangent
- TH01-99 - Track & Hold
- TOT01-99 - Totalizer
- TSW01-99 - Transfer Switch
- XOR01-99 - Exclusive OR Logic

NOTE:
Each configured loop can have one operator display block and one controller block.
Controllers

Model 353 Process Automation Controller
with Ethernet Communication (Design Level B)

Accessories

Graphical Configuration Software (TGX:ICCNFIG-V4.00, Consult Siemens for latest version) Windows® 95/NT™/2000/XP software for configuration of the Model 353 and creation of the function block diagram. Configurations can be transferred using the built-in front panel connector, the Modbus network, or the Multi Media card.

Mounting Dimensions
Model Number

Process Automation Controller with Ethernet Communication
Model Number: TGX: 353

Controller Board
- 120/240 Vac (85-264 Vac); 47-63 Hz
- 24 Vdc, +20%, -15%

Mounting Case
- Standard Case with Ethernet Connector
- High Shock & Vibration Case w/ Ethernet Connector

Operator's Display Panel
- Fixed Analog & Digital Displays

Expander Board
- Not Required
- Local I/O Expander (T/C, RTD, Frequency, Relay, ...)

Multi Media Card
- MMC

Modification Option
- Not required
- Controller modified as detailed in order Bill of Material

Design Level
- Design Level B

Electrical Approval
- Not required
- FM/CSA Class I, Div. 2, Groups A, B, C, D suitable for non-incendive (CE Compliant & ABS Approved)

Sample Model Number
- TGX: 353 A4 FN CNB 4

Ordering Data

<table>
<thead>
<tr>
<th>Controller Board</th>
<th>Mounting Case</th>
<th>Operator's Display Panel</th>
<th>Expander Board</th>
<th>Multi Media Card</th>
<th>Modification Option</th>
<th>Design Level</th>
<th>Electrical Approval</th>
<th>Sample Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGX: 353</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TGX: 353</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A4 FN CNB 4</td>
</tr>
</tbody>
</table>

Controllers

Model 353 Process Automation Controller with Ethernet Communication (Design Level B)
Introduction

Features & Benefits

- Windows® XP or 7 operating system provides powerful graphical interface
- Automatic line routing and interloop wiring reduces overall drawing time
- User selected tag names in a reference list allow easy interconnection between continuous and discrete loops
- Choice of function block and ladder logic format provides application versatility
- Easy cut, copy, and paste capabilities allow control strategies to be duplicated and shared between multiple controllers for reduced configuration time
- User defined line styles and colors permit visual separation of continuous and analog signals for easier understanding of control loops
- Line layering capability allows viewing of continuous and discrete signals independently or together
- Comprehensive drawing package facilitates creation of text comments and graphical illustrations for better understanding of the control strategy
- Application Library provides quick start-up and base line for more complex configurations

Description

The ||config™ Configuration Utility provides the tools to create a loop controller graphical interface and manage a loop controller configuration. Based on the 32-bit Windows technology, the software allows configuration of discrete control in function block or ladder logic. Moreover, comprehensive drawing capabilities allow the inclusion of comments and illustrations that further explain the control circuit to be included.

Loops for continuous control are configured in function block form, while discrete loops are configured in either ladder logic or function block. The software's reference list allows user's to create tags that interconnect discrete signals between function block loops and contacts or coils in the ladder logic. Interconnecting signals from comparators or alarms on measured variables, such as pressure, flow and temperature, eliminate the need for external pressure switches or thermal switches.

Depending on the user's preference, function block interconnection can be performed via Windows-based dialog boxes or point and click wiring with a cursor. A dynamic drag and drop feature allows user to easily move function blocks to create an intuitive signal flow design. Function block parameters are entered and modified via clear dialog boxes.

For documenting and archiving configurations, the configuration utility supports a variety of printing options. Standard print features, such as portrait and landscape, various paper sizes, and print preview are supported. In addition to graphical view printing, a list of all the parameters configured in the station can be printed. This list permits easy troubleshooting during start-up or maintenance.

To order the ||config Configuration Utility kit, which includes installation CD, the user's manual, and a cable to connect a PC to the front ports of the Model 353, specify part P/N ||config Vx.xx.

System Requirements

- Model 353 with software version 1.2 or higher
- Windows XP or 7
- Pentium 600 Mhz or higher processor
- 512 MB of memory
- 1 GB of free disk space
- CD ROM Drive

1) Vx.xx specifies the software's revision number. This will be defined by Siemens as the latest revision.
Controllers
Model 353 Process Automation Controller Ethernet Remote I/O

Features & Benefits

- Web Browser Configuration enables simple setup and calibration without the need for special configuration or calibration software.
- Ethernet Protocol allows the use of standard Ethernet network hardware and cables.
- Direct Network Interface. Each module has its own built-in micro controller for Ethernet communication thus eliminating the need for bus couplers or common bus interfaces.
- Complete Isolation of the I/O, power, & network circuits provide easier installation including greater improved safety and noise immunity.
- Network Security is provided by password protection for configuration & calibration.
- Wide Ambient Temperature Range provides reliable operation from -20 to 70°C.
- Simple System Integration provided by standard 353 function blocks enable configuration of update rates, range units, engineering units, etc in less time.
- Wide Range of Module Types including Current & Voltage inputs; Discrete inputs and outputs; Thermocouple, RTD, ACCurrent, & Resistance inputs solve complete I/O needs.

Description

These modules will extend the I/O of the 353 controller in applications requiring larger data collection. Modules transfer data using standard Ethernet networking techniques. Modules can be mounted local to the controller or in remote areas. A wide range of analog and discrete modules are available to meet most process applications.
Controllers

Model 353 process Automation Controller Ethernet Remote I/O

Ordering data

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Remote I/O</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ethernet I/O Modules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• DC Current Input - 6 Differential Channels [961EN-4006]</td>
<td>30001750</td>
</tr>
<tr>
<td></td>
<td>• DC Voltage Input - 6 Differential Channels [962EN-4006]</td>
<td>30001751</td>
</tr>
<tr>
<td></td>
<td>• DC Current Input - 12 Single Ended Channels [963EN-4012]</td>
<td>30001752</td>
</tr>
<tr>
<td></td>
<td>• DC Voltage Input - 12 Single Ended Channels [964EN-4012]</td>
<td>30001753</td>
</tr>
<tr>
<td></td>
<td>• Thermocouple/MV Input - 4 Channels [965EN-4004]</td>
<td>30001754</td>
</tr>
<tr>
<td></td>
<td>• Thermocouple/MV Input - 6 Channels [965EN-4006]</td>
<td>30001755</td>
</tr>
<tr>
<td></td>
<td>• RTD/Resistance Input - 4 Channels [966EN-4004]</td>
<td>30001822</td>
</tr>
<tr>
<td></td>
<td>• RTD/Resistance Input - 6 Channels [966EN-4006]</td>
<td>30001823</td>
</tr>
<tr>
<td></td>
<td>• DC Current Output - 4 Channels [972EN-4004]</td>
<td>30001824</td>
</tr>
<tr>
<td></td>
<td>• DC Current Output - 6 Channels [972EN-4006]</td>
<td>30001827</td>
</tr>
<tr>
<td></td>
<td>• DC Voltage Output - 4 Channels [973EN-4004]</td>
<td>30001829</td>
</tr>
<tr>
<td></td>
<td>• DC Voltage Output - 6 Channels [973EN-4006]</td>
<td>30001831</td>
</tr>
<tr>
<td></td>
<td>• Discrete Input - 12 Channels [981EN-4012]</td>
<td>30001832</td>
</tr>
<tr>
<td></td>
<td>• Discrete Output - 12 Channels [982EN-4012]</td>
<td>30001833</td>
</tr>
<tr>
<td></td>
<td>• Discrete Input/Output - 12 Channels [983EN-4012]</td>
<td>30001835</td>
</tr>
<tr>
<td></td>
<td>Ethernet I/O Module Accessories</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ethernet Switch - 5 Port [900EN-5005]</td>
<td>30001964</td>
</tr>
<tr>
<td></td>
<td>• AC Current Sensor [5020-350]</td>
<td>30001965</td>
</tr>
<tr>
<td></td>
<td>• Ethernet Cat5 Cable - 3 ft. [5035-355]</td>
<td>30001966</td>
</tr>
<tr>
<td></td>
<td>• Ethernet Cat5 Cross-Over Cable - 5 ft. [[5035-360]</td>
<td>30001967</td>
</tr>
<tr>
<td></td>
<td>• Universal Power Supply - 24Vdc/600mA [PS5R-B24]</td>
<td>30001969</td>
</tr>
<tr>
<td></td>
<td>• Universal Power Supply - 24Vdc/2.1A [PS5R-D24]</td>
<td>30001970</td>
</tr>
<tr>
<td></td>
<td>• Universal Power Supply - 24Vdc/5A [PS5R-F24]</td>
<td>30001955</td>
</tr>
<tr>
<td></td>
<td>• DIN Rail - 3.0 in. long [DIN RAIL 3.0]</td>
<td>30001956</td>
</tr>
<tr>
<td></td>
<td>• DIN Rail - 16.7 in. long [DIN RAIL 16.7]</td>
<td>30001957</td>
</tr>
<tr>
<td></td>
<td>• Rack Mount Kit - 19 in. [20RM-16-DIN]</td>
<td>30001958</td>
</tr>
<tr>
<td></td>
<td>• User Manuals on CD [5035-547]</td>
<td>30001959</td>
</tr>
</tbody>
</table>
Features & Benefits

- Universal location for all process information so you only have to enter information once, which significantly minimizes manual errors.
- The OPC data server automatically reads the network, identifies attached controllers, and generates a global system database within a few minutes.
- i|ware OPC data server can be used with any OPC client to facilitate plantwide communications.
- Ability to test communication with the controller prior to generating an HMI interface.
- Support of other protocols, such as Moore’s Local Instrument Link (LIL), Modbus, and Ethernet, to integrate with your other control systems and field devices.
- Monitoring mode that allows on-line value viewing and checking.

Description

i|ware server is an OPC-compliant data server that generates a system-wide global database with the click of a mouse. i|ware OPC server acts as the universal location for all of your process information, including tags, alarms and history. So, you only ever have to enter information once, which significantly minimizes the possibility of manual errors and cuts your configuration time in half.

The OPC data server automatically reads the network to see what controllers are attached and generates a global system database. This database maintains itself and updates live process variables, plus changes to the controllers, such as tag and range values. Your system database and HMI—complete with status screens, group displays, and control and sequencer faceplates—are automatically created from your control strategy data.

Because it is an OPC-compliant server, the i|ware OPC server integrates with the HMI and any other OPC-compliant clients to facilitate plant-wide communication. It also provides a standard mechanism to transfer data from one to the other. Besides decreasing your costs and increasing your bottom-line, this approach allows you to move to start-up more quickly.
Controllers

i|ware for 353 Series Controller

Introduction

Features & Benefits

- Five levels of screens are automatically created, based on controller strategy, eliminating days of HMI development time
- 50 ms dynamic animation updates provide operators with up-to-the-minute information
- Powerful display creation and animation tools, coupled with an advanced symbol library, expedite operator interface customization
- Built-in expressions and calculations, as well as display, trending, and alarm management functions, deliver comprehensive operator information
- Scalable and fixed scale displays that allow information to be displayed in the form and manner required for a particular application
- Embedding of ActiveX® controls and OLE objects to display information from other systems and devices
- Ability to log, time-stamp, and store controller alarms and events on a PC hard drive for later review and analysis

Description

i|ware is a comprehensive operator interface—including status screens, group displays, control faceplates, and loop detail and tuning screens—that is automatically created from the controller database. That makes your job easier and significantly reduces costs by completely eliminating your initial HMI development effort. But, you can still add graphics and modify the screens that i|ware makes for you to customize the overall look and feel.

i|ware enhances the interface between client and server applications using a standard mechanism to transfer data from one to the other. The standard, OPC, facilitates plant-wide communication, because it integrates i|ware with any other OPC-compliant software or system. i|ware also includes Ethernet communications that eliminate the need for integration with fieldbus technology and dramatically reduce networking costs.

Enterprise Edition

The Enterprise Edition provides alarm monitoring and historical trending. The alarm and trend servers support a comprehensive list of features. ArchiveX viewers permit quick and easy customization of viewer display format. Alarm logging and trend reports are also available.

i|ware supports VBA scripting for custom applications. Login security is available.

Specifications

Recommended Requirements

- i|station operator workstation
- or -
 - Plant Workstation
 - Pentium 2.0 GHz or higher processor
 - 1 GB RAM
 - 40 MB of available hard disk space for applications
 - 1 GB hard disk space for historical database
 - CD ROM drive
 - SVGA 800x600 resolution monitor (256 colors) or better
 - Microsoft Windows 95/98 or Windows NT 4.0 service release 6.0, XP Professional
 - Microsoft DCOM
 - Microsoft Internet Explorer version 3.02 or higher
 - Trend WorX32
Controllers

i|ware for 353 Series Controller

Ordering data

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>**i</td>
<td>ware**</td>
</tr>
<tr>
<td>i</td>
<td>ware PC Operator Interface Software Ver. 3.00</td>
</tr>
<tr>
<td>• BasicV3.00_500pt</td>
<td>IWARE E05V300</td>
</tr>
<tr>
<td>• EnterpriseV3.00_500pt</td>
<td>IWARE E15V300</td>
</tr>
<tr>
<td>• EnterpriseV3.00_1500pt</td>
<td>IWARE EULV300</td>
</tr>
<tr>
<td>• EnterpriseV3.00_unlimited</td>
<td>IWARE ETDV300</td>
</tr>
<tr>
<td>• OPCServers_Modbus_EN_LIL</td>
<td>IWARE OP CV300</td>
</tr>
</tbody>
</table>

i|ware PC Operator Interface Software Ver. 3.00 Upgrades

<table>
<thead>
<tr>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I W U B 0 5 V 3 0 0 B 0 5</td>
</tr>
<tr>
<td>I W U E 0 5 V 3 0 0 B 0 5</td>
</tr>
<tr>
<td>I W U E 1 5 V 3 0 0 B 0 5</td>
</tr>
<tr>
<td>I W U E U L V 3 0 0 B 0 5</td>
</tr>
<tr>
<td>I W U E 0 5 V 3 0 0 E 0 5</td>
</tr>
<tr>
<td>I W U E 1 5 V 3 0 0 E 0 5</td>
</tr>
<tr>
<td>I W U E U L V 3 0 0 E 0 5</td>
</tr>
<tr>
<td>I W U E 1 5 V 3 0 0 E 1 5</td>
</tr>
<tr>
<td>I W U E U L V 3 0 0 E 1 5</td>
</tr>
<tr>
<td>I W U E U L V 3 0 0 E U L</td>
</tr>
</tbody>
</table>
Controllers

i|station for 353 Series Controller

Introduction

Features & Benefits

- Proven operator interface prepacked with i|config, i|ware, and i|ware OPC server, reduces system start-up and test time
- 15” color Thin Film Transistor (TFT) 1024 x 768 LCD
- Desk-top operation for greater application versatility
- Industrial-grade luminance of 200 cd/m² and backlight lifetime of up to 20,000 hours that afford a long, trouble-free life

Description

i|station is an industrial operator workstation with pre-installed user interface and configuration software, allowing you to connect to a live process right away. This sleek unit, which features an analog resistive screen with a guaranteed 30 million-touch lifetime, boasts a wide viewing angle for better operator observation.

Designed for reliable operation in the harshest of industrial environments, i|station is built to NEMA 4/12 and IP65 specifications. It also features advanced communication capabilities via four serial ports and an onboard Ethernet controller. Plus, i|station's modular design reduces your maintenance and upgrade effort to little more than removal of the front panel.

Specifications

i|station WINDOWS XP

General
- Display Type: TFT color LCD
- Size: (diagonal) 15” (381 mm)
- Max. resolution: 1024 x 768
- Max. colors or grayscales: 256 K
- Dot size: 0.012” x 0.012” (0.297 x 0.297 mm)
- Luminance: 200 cd/m²
- Viewing angle: 100°
- Temperature: 32 to 122°F (0 to 50°C)
- VR controls: Brightness
- Simultaneous mode: Yes
- LCD MTBF: 50,000 hours
- Backlight MTBF: 20,000 hours
- CPU: Intel® Pentium 2.4 GHz
- Dimensions: 16.54” x 12.72” x 4.17” (420 x 323 x 106 mm)
- Weight: 14.3 lbs. (6.5 kg)
- Front panel protection: IP65/NEMA4-compliant
- IDE HDD interface [2.5” (63.5 mm) HDD bay]
- Memory: 1 GB

Network (LAN): Novell NE2000 compatible, 100/01Base-T interface
- I/O ports:
 - 4 serial ports: 3 RS-232, 1 RS-232/422/485
 - 1 parallel port
 - PCMCIA Type II x 2, Type III x 1
 - 1 PS/2 mouse and keyboard interface
 - Mic-in, Line-in, Line-out, and game port
 - 2 USB ports
- Bus expansion: One expansion slot for half-size PCI/ISA card

Power Supply
- Output rating: 80 W (max.) AC 85 to 264 V inlet
- Input voltage: 115 to 230 Vac at 47 to 63 Hz
- Output voltage: +5 V at 12 A, +12 V at 1 A
- MTBF: 50,000 hrs
- Safety: Meets UL, CSA, CE

Environmental
- Operating temperature: 32 to 122°F (0 to 50°C)
- Relative humidity: 10 to 95% at 104°F (40°C), non-condensing
- Shock: 10 G peak acceleration (11 msec. duration)
- EMI: Meets FCC/CE Class A

Touchscreen
- Type: Resistive
- Resolution: Continuous
- Light transmission: 75%
- Controller: RS-232 interface
- Power consumption: +5 V at 200 mA
- Lifetime: 30 million touches

Accessories
- Table top stand
- Keyboard & mouse
- DB9F/MJ11 cable adapter
- MJ11 cable assembly
Mounting Dimensions

Dimensions are in inches (millimeters).
Controllers

iStation iStation for 353 Series Controller

Ordering data

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>iStation</td>
<td></td>
</tr>
<tr>
<td>iStation Flatpanel LCD Operator Interface</td>
<td></td>
</tr>
<tr>
<td>• iStation 15” Monitor, WinXP (includes iWARE-B05-V3.00 & iCONFIG)</td>
<td>ISTATION1501D</td>
</tr>
<tr>
<td>• iStation 15” Monitor, WinXP (includes iWARE-E05-V3.00 & iCONFIG)</td>
<td>ISTATION1502D</td>
</tr>
<tr>
<td>• iStation 15” Monitor, WinXP (includes iWARE-E15-V3.00 & iCONFIG)</td>
<td>ISTATION1503D</td>
</tr>
<tr>
<td>• iStation 15” Monitor, WinXP (includes iWARE-EUL-V3.00 & iCONFIG)</td>
<td>ISTATION1504D</td>
</tr>
<tr>
<td>iStation Accessories</td>
<td></td>
</tr>
<tr>
<td>• Table Top Mounting Stand (include with 15” Desk Top Applications)</td>
<td>16357-264</td>
</tr>
<tr>
<td>• Keyboard (include with all iStations)</td>
<td>16357-262</td>
</tr>
<tr>
<td>• Y Cable Adapter for KB & Mouse (included with iSTATION)</td>
<td>16357-261</td>
</tr>
<tr>
<td>• Mouse (included with all iStations)</td>
<td>16357-263</td>
</tr>
</tbody>
</table>
Valve Positioners
Series 760P/E Valve Positioners

Introduction

Features & Benefits
- Universal design and choice of interchangeable NAMUR IEC 534-6 rectilinear VDI/VDE 3845 rotary mountings provide wide application flexibility
- Double-acting or single-acting service and split ranging afford application versatility in a single unit
- Non-interaction of the zero and span adjustments and CAMLOC (TM) cam locking mechanism significantly reduce calibration and setup time
- Modular design reduces inventory because it allows interchangeable spare parts
- Comes standard with 3 cams, linear, quick opening and equal % for application versatility

Description
The Series 760 Valve Positioners provide a cost effective universal approach to your valve control. Their modular concept allows all models to be built on the base pneumatic unit (Model 760P). The electro-pneumatic model (Model 760E) is created by adding an I/P transducer to the base pneumatic unit, and a wide range of accessories easily installs inside the unit.

The 760 base pneumatic unit provides cam characterization, split ranging, direct or reverse action, and single or double acting without requiring additional parts. Key design features include non-interaction of the zero and span adjustments.

Series 760 Valve Positioners include provisions for internal limit switch mounting and position feedback devices without requiring additional housings. Thus, the need to stack housings that impede access to the main enclosure are eliminated.

A spool valve is used to load the actuator for positioning in response to an input signal. A characterized cam provides mechanical feedback. There are linear, equal percentage and quick opening operation cam profiles, and a blank profile cam is available for custom applications. Rectilinear action length can range from 1/2 inch to 6 inches.

The feedback shaft and characterized cam can be replaced in the field to configure the positioner for use with either a rectilinear or rotary actuator. No additional parts are necessary to change between single or double acting actuators or direct or reverse action.
Valve Positioners
Series 760P/E Valve Positioners

Technical data

Mounting Dimensions
Specifications

Functional Specifications

Temperature Range
760P: –40 to 185°F (–40 to 85°C)
–4 to 185°F (–20 to 85°C)
High temp. option available to 300°F (148°C)
760E: –40 to 167°F (–40 to 75°C)
–4 to 167°F (–20 to 75°C)
with optional Viton® dynamic elastomers

Ingress
NEMA 4X, IP 65

Connections
Pneumatic – 1/4” NPT
Gauge – 1/8” NPT
Electrical – 3/4” NPT, 25mm
Exhaust – 1/4” NPT

Finish
Epoxy/Polyester Powder Coat

Output Configuration
Single or Double Acting

Action
Direct or Reverse

Supply Pressure
150 psig max.

Air Consumption
Standard Spool: 0.5 scfm typical
Low Gain Spool = 0.5 scfm
High Flow Capacity Spool: 1.0 scfm (typical)

Flow Capacity (at 60 psi with 25% drop)
9.0 scfm (Cv = 0.3) Standard
18.0 scfm (Cv = 0.6) Optional

Input Signal
760P: 3-15 psig, 3-27 psig, 50% split range
760E: 4-20 mA, 50% split range

Mechanical Feedback
90°, rotary std.
1/2” to 6” linear optional (longer lengths available on request)

Characterization
Equal %; Quick Opening; Linear

Pressure Gain
160:1@ 60 psig standard

Span
Adjustable –60% to +25% of normal span

Zero
Adjustable –10% to +60% of normal span

©Viton is a registered trade name of DuPont Performance Elastomers

Performance Specifications

Linearity (Independent)
760P: 0.5% of normal span (typical)
760E: 0.75% of normal span (typical)

Hysteresis
760P: 0.75% of normal span (typical)
760E: 1.0% of normal span (typical)

Deadband
Less than or equal to 0.25% of span

Repeatability
Within 0.5% of span

Supply Pressure Effect
Less than 0.2% of span for a 5 psi change in supply pressure

Hazardous Area Class Approval

Series 760 Approvals & Certifications

FM Approvals:
Intrinsically Safe:
Class I, Division 1, Groups A, B, C, D
Class II, Division 1, Groups E, F and G
Class III, Division 1
When installed in accordance with Siemens drawing 15032-7602 rev.5

Non-incendive:
Class I, Division 2, Groups A, B, C, D
Suitable for:
Class II, Division 2, Groups F and G
Class III, Division 2

CSA Certification
Intrinsically Safe:
Class I, Division 1, Groups A, B, C, D
Class II, Division 1, Groups E, F, G
Class III, Division 1
When installed in accordance with Siemens drawing 15032-7620

Suitable for:
Class I, Division 2, Groups A, B, C, D
Class II, Division 2, Groups E, F, G
Class III, Division 2

CE
EN50081-1 and EN50081-2 Emission
EN61000-6-1 and EN60000-6-2 Immunity

ATEX Certified:
II 2G Ex ia IIC T4/T5/T6
II 3G Ex nL IIC T5
See ATEX Certificates for Service Restrictions
SIRA 03 ATEX 2577X
SIRA 03 ATEX 4578

Enclosure:
Type 4X, in accordance with NEMA Std. 250
Type IP65, in accordance with IEC Std. 529
Valve Positioners
Series 760P/E Valve Positioners

Ordering data

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series 760 Valve Controller/Positioner</td>
<td>760</td>
</tr>
</tbody>
</table>

Basic Model Code No.

- 760 Valve Controller (Positioner)

Input signal

- 4 to 20 mA (not available with High Temp. Option)
- 3 to 15 psig
- 3-27/6-30 psig
- 20 to 100 kPa
- 0.2 to 1.0 Bar
- 0.2 to 1.0 kg/cm²

Action (Rising Stem/Linear or Rotary)

- 1/2 to 4 inch stroke lever with set of (3) 60° cams
- 2 to 6 inch stroke lever with set of (3) 60° cams
- 1/4 turn - 1/2 inch square shaft with set of (3) 90° cams
- 1/2 to 2 inch stroke lever with set of (3) 60° cams
- 1/4 turn NAMUR style shaft end with set of (3) 90° cams
- 1/4 turn - 1/2 inch square shaft with set of (3) 60° cams
- 1/2 to 4 inch stroke lever with (1) 90° linear cam
- 2 to 6 inch stroke lever with (1) 90° linear cam
- 1/4 turn NAMUR shaft with set of (3) 60° cams

Enclosure Type 4X/IP65 (with 3/4 inch NPT Conduit Connection)

- Standard
- With 90° Beacon Indicator (not available with High Temp. Option)
- With 60° Flat Indicator (not available with High Temp. Option)
- With 90° Flat Indicator (not available with High Temp. Option)

Enclosure Type 4X/IP65 (with M25 Conduit Connection)*

- Standard
- With 90° Beacon Indicator (not available with High Temp. Option)
- With 60° Flat Indicator (not available with High Temp. Option)
- With 90° Flat Indicator (not available with High Temp. Option)

Flow Capacity

- Standard Capacity Spool Valve Assembly (Cv = 0.3)
- High Flow Capacity Spool Valve Assembly (Cv = 0.6)
- Low Flow Gain Spool Valve Assembly

NOTES:

1. Fix feedback pin in lever to hold non-linearity error to 3% max. Consult factory for more details.
2. The Low Flow Gain Spool Valve Assembly option can provide more stable operation when the positioner is installed on small volume actuators, i.e. piston diameters less than 4” (10mm). Consult factory for more details.

*760 with M25 metric enclosure no longer available. For M25 thread requirements, use adapter TGX:16300-1439
Valve Positioners
Series 760P/E Valve Positioners

Ordering data

Model Number
Series 760 Valve Controller/Positioner (cont’d)

Environmental Construction Options
- Standard Temperature (-40°F to +185°F) (-40°C to +85°C)
- High Temp. (-20°F to +300°F) (-29°C to +149°C) avail. on 760P w/ no elec. options or approvals
- Ozone Resistant with Viton® dynamic elastomers and iso-elastomeric spring

Gauges (Not available with Hi Temp. Environmental Construction “C”)
- Not Required
- Gauges (set of three gauges)

Limit Switches (Not avail. with Hi Temp Environmental Construction “C”)
- Not Required
- Mechanical Switches, (2) SPDT
- Proximity Switches (2) NAMUR type

Feedback Devices (Not avail. with Hi Temp Environmental Construction “C”)
- Not Required
- Potentiometer - 1K
- 4 to 20 mA dc Feedback
- Potentiometer - 1K w/SS feedback gear
- 4 to 20 mA dc Feedback w/SS feedback gear

Design Level
- Revision

Electrical Approval
- None
- FM / CSA / ATEX / CE

Series 760 Approvals & Certifications

FM (Factory Mutual) Approvals:
- Intrinsically Safe:
 - Class I, Division 1, Groups A, B, C, D
 - Class II, Division 1, Groups E, F, G
 - Class III, Division 1
- Non-Incendive:
 - Class I, Division 2, Groups A, B, C, D

CSA (Canadian Standards Association) Certification
- Intrinsically Safe:
 - Class I, Division 1, Groups A, B, C, D
 - Class II, Division 1, Groups E, F, G
 - Class III, Division 1
- Suitable for:
 - Class II, Division 2, Groups E, F, G
 - Class III, Division 2

NOTES:
1. Fix feedback pin in lever to hold non-linearity error to 3% max. Consult factory for more details.
2. The Low Flow Gain Spool Valve Assembly option can provide more stable operation when the positioner is installed on small volume actuators, i.e. piston diameters less than 4 in (10mm). Consult factory for more details.
Valve Positioners
Series 760P/E Valve Positioners

Ordering data

760 Series Valve Controller/Positioner (cont’d)

<table>
<thead>
<tr>
<th>Conversions</th>
<th>Options</th>
<th>Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Add I/P Module Kit (Converts 760P to 760E)</td>
<td>• Add Mechanical Limit Switches Kit (2) SPDT</td>
<td>• Manual</td>
</tr>
<tr>
<td>• 3-15 PSI Input Spring (Std. Temp.)</td>
<td>• Add Proximity Limit Switches Kit (2) NAMUR type</td>
<td>• User Manual CD (included with each instrument)</td>
</tr>
<tr>
<td>• (3) Pressure Gauge Kit</td>
<td>• Add 1K Feedback Potentiometer Kit</td>
<td></td>
</tr>
<tr>
<td>• Add 90° Beacon Indicator Kit (for 1/4 Turn Actuators)</td>
<td>• Add 4 to 20 mAdc Feedback Kit</td>
<td></td>
</tr>
<tr>
<td>• Add 60° Flat Indicator Kit (for Lever Action Actuators)</td>
<td>• Add Mechanical Limit Switches & 1K Feedback Potentiometer Kit</td>
<td></td>
</tr>
<tr>
<td>• Add 90° Flat Indicator Kit (for 1/4 Turn Actuators)</td>
<td>• Add Mechanical Limit Switches & 4 to 20 mAdc Feedback Kit</td>
<td></td>
</tr>
<tr>
<td>• 3-15 PSI Conversion Kit (Hi Temp)</td>
<td>• Add Proximity Limit Switches & 1K Feedback Potentiometer Kit</td>
<td></td>
</tr>
<tr>
<td>• 3-27/6-30 psi Conversion Kit (Std. Temp)</td>
<td>• Add Proximity Limit Switches & 4 to 20 mAdc Feedback Kit</td>
<td></td>
</tr>
<tr>
<td>• Hi-temps 3/27 PSI</td>
<td>• Add 1K Feedback Potentiometer Kit w/SS feedback gear</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Above listed options are limited to standard upper temperature limit of +185° F.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversions

- Add I/P Module Kit (Converts 760P to 760E)
- 3-15 PSI Input Spring (Std. Temp.)
- (3) Pressure Gauge Kit
- Add 90° Beacon Indicator Kit (for 1/4 Turn Actuators)
- Add 60° Flat Indicator Kit (for Lever Action Actuators)
- Add 90° Flat Indicator Kit (for 1/4 Turn Actuators)
- 3-15 PSI Conversion Kit (Hi Temp)
- 3-27/6-30 psi Conversion Kit (Std. Temp)
- Hi-temps 3/27 PSI

Options

- Add Mechanical Limit Switches Kit (2) SPDT
- Add Proximity Limit Switches Kit (2) NAMUR type
- Add 1K Feedback Potentiometer Kit
- Add 4 to 20 mAdc Feedback Kit
- Add Mechanical Limit Switches & 1K Feedback Potentiometer Kit
- Add Mechanical Limit Switches & 4 to 20 mAdc Feedback Kit
- Add Proximity Limit Switches & 1K Feedback Potentiometer Kit
- Add Proximity Limit Switches & 4 to 20 mAdc Feedback Kit
- Add 1K Feedback Potentiometer Kit w/SS feedback gear
- Add 4 to 20 mAdc Feedback Kit w/SS feedback gear
- Add Mechanical Limit Switches & 1K Feedback Potentiometer Kit w/SS feedback gear
- Add Mechanical Limit Switches & 4 to 20 mAdc Feedback Kit w/SS feedback gear
- Add Proximity Limit Switches & 1K Feedback Potentiometer Kit w/SS feedback gear
- Add Proximity Limit Switches & 4 to 20 mAdc Feedback Kit w/SS feedback gear

Cams

- 760 P/E Cam Kit, rotary 90° Action (3 cams: Linear, QO, =%)
- 760 P/E Cam Kit, linear 60° Action (3 cams: Linear, QO, =%)
- 75° Rectilinear-Linear
- Cam, 180° - CW, Rotary -Linear
- Cam, 30° - Rectilinear - Linea
- Blank Cam Kit
- Cam, 180° - CCW, Rotary-Linear

Spare Parts Kits

- Spare Parts Kit includes all recommended rebuild parts as shown in SD760, Issue 7

Accessories

- Manual
- User Manual CD (included with each instrument)
Valve Positioners
Series 73 Built-In Valve Positioner

Features & Benefits
- Single-axis, force-balance principle of operation, ensures accurate and stable positioning
- Feedback circuits direct the actuator's position, ensuring adherence to the control instrument signal
- Range spring capability accommodates a wide variety of valve strokes and instrument spans

Description
The Series 73 Built-in Valve Positioners use the full force of their air supply to drive and maintain the piston or diaphragm in a pneumatic actuator to position a valve to what is required by a control instrument, regardless of the presence of forces that change valve position.

This line of compact instruments incorporates a single-axis, force-balance principle of operation to ensure accurate and stable control valve positioning. In all cases, including bottom-loading applications, a Model 73 Built-In Valve Positioner is mounted directly on the topwork of the valve, with no external levers or other exposed mechanisms.

Each positioner receives a signal from a control instrument, and using an air supply as high as 100 psig, the positioner strokes the valve actuator to the required position.

Like all valve positioners, the Model 73 Built-In Valve Positioners have feedback circuits designed to measure the position of the actuator’s piston or diaphragm. The positioner then supplies or exhausts air to bring the actuator within the required range for its corresponding control instrument.

The position of the piston or diaphragm in the valve actuator is sensed by the amount of compressive force exerted by a range spring on the valve positioner’s diaphragm assembly. By selecting the appropriate range spring from the wide selection available almost any combination of valve stroke (from 1/4" to 4") and instrument span (from 2 to 24 psi) can be obtained.

Specifications
Functional Specifications
- Input Range: 3-15, 3-9, 9-15, 6-30, 3-27 psig
- Valve Travel
 - Minimum: 1/4"
 - Maximum: 4"
- Supply Pressure
 - Minimum: 3 psi above required actuator pressure
 - Maximum: 100 psig

Air Consumption
(In balance condition with 20 psig supply and 9 psig dead-ended output)
- 73N_F: 0.25 scfm
- 73N_B: 0.6 scfm

Overrange Limit
150 psig to any connection

Response Level
(output sensitivity to input pressure changes)
- 73N_F: 0.1% of input span
- 73N_B: 0.25% of input span

Functional Mechanical
Materials of Construction
Aluminum, brass, stainless steel, Neoprene®, and/or Buna-N

Model Selection

<table>
<thead>
<tr>
<th>Model</th>
<th>Type of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>73N12F</td>
<td>Top-loading, direct-acting, input spans of 2 to 12 psi</td>
</tr>
<tr>
<td>73N24F</td>
<td>Top-loading, direct-acting, input spans over 12 to 24 psi</td>
</tr>
<tr>
<td>73N-FR</td>
<td>Top-loading, reverse-acting</td>
</tr>
<tr>
<td>73N-B</td>
<td>Bottom-loading, direct-acting, with top air-cushion loading</td>
</tr>
<tr>
<td>73N-B1</td>
<td>Bottom-loading actuators w/actuator range spring</td>
</tr>
</tbody>
</table>
Valve Positioners
Series 73 Built-In Valve Positioner

Technical data

Spring Table

<table>
<thead>
<tr>
<th>Instrument Input Pressure Span (PSI)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Stroke Inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1212</td>
<td>1012</td>
<td>812</td>
<td>612</td>
<td>512</td>
<td>412</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/16</td>
<td>1612</td>
<td>1212</td>
<td>1012</td>
<td>712</td>
<td>612</td>
<td>512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>1812</td>
<td>1412</td>
<td>1212</td>
<td>1012</td>
<td>712</td>
<td>612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/16</td>
<td>2012</td>
<td>1812</td>
<td>1412</td>
<td>1012</td>
<td>812</td>
<td>712</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>2412</td>
<td>2012</td>
<td>1612</td>
<td>1212</td>
<td>1012</td>
<td>812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/16</td>
<td>2812</td>
<td>2012</td>
<td>1812</td>
<td>1412</td>
<td>1012</td>
<td>1012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/8</td>
<td>3212</td>
<td>2412</td>
<td>2012</td>
<td>1612</td>
<td>1212</td>
<td>1012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>3612</td>
<td>2812</td>
<td>2412</td>
<td>1812</td>
<td>1412</td>
<td>1212</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/8</td>
<td>4412</td>
<td>3612</td>
<td>2812</td>
<td>2012</td>
<td>1812</td>
<td>1412</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4812</td>
<td>4012</td>
<td>3212</td>
<td>2412</td>
<td>2012</td>
<td>1612</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/8</td>
<td>5612</td>
<td>4412</td>
<td>3612</td>
<td>2812</td>
<td>2012</td>
<td>1812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/4</td>
<td>6412</td>
<td>4812</td>
<td>4012</td>
<td>3212</td>
<td>2412</td>
<td>2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/2</td>
<td>6412*</td>
<td>4812</td>
<td>3612</td>
<td>2812</td>
<td>2412</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3/4</td>
<td>6412*</td>
<td>4812</td>
<td>4012</td>
<td>3212</td>
<td>2612</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6412*</td>
<td>4812</td>
<td>4012</td>
<td>3212</td>
<td>2812</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/4</td>
<td>5612</td>
<td>4412</td>
<td>3612</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1/2</td>
<td>6412*</td>
<td>4812</td>
<td>4012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3/4</td>
<td>6412*</td>
<td>4812</td>
<td>4412</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6412*</td>
<td>4812</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1/2</td>
<td>5612</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6412*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) The maximum zero pressure for Model 73N12F is 9 psig when the 12395 series range spring is used.
2) The maximum zero pressure for Model 73N24F is 15 psig for instrument pressure spans of 16 psi or greater, and 28 psig when used for spans of 12 psi or less.
3) The maximum instrument pressure for Model 73N-FR is 15 psig for instrument pressure spans of 12 psi or less, and 27 psi for spans of 16 psi or greater.

Mounting Dimensions

Spring Selection
1. Find the valve stroke nearest the desired valve stroke.
2. Find the instrument input pressure span nearest the desired instrument input pressure span.
3. Select the proper range spring at the intersection of the valve stroke and the instrument input pressure span columns.
Valve Positioners
Series 74 Valve Positioners

Introduction

Features & Benefits
- Double-acting or single-acting service accommodates installation in a variety of environments
- Field reversibility reduces downtime and simplifies maintenance
- Choice of continuously adjustable standard stroke ranging from 1/4" to 48" and continuous span and zero adjustability within range spring limits provide application versatility
- Extra high capacity pilots ensure maximum frequency response and optimum stroking speeds for all actuator sizes
- Negative feedback pilot circuit allows the positioner to operate with a push-pull gain of more than 900:1 (using 100 psig supply) with no sacrifice in stability

Description
The Model Series 74 Valve Positioners are universal positioners that provide versatility, dynamic performance, and high positioning accuracy. They use the piston or diaphragm in a pneumatic actuator to position a valve to what is required by a control instrument and hold that position, regardless of the presence of forces that change valve position. As such, supply pressure variations have little or no effect on the positioner output, which eliminates the need for a supply pressure regulator.

These valve positioners are two-stage, pilot-operated instruments. The pilot circuit activates dual-output boosters, which perform opposite actions (when one booster is supplying air, the other is exhausting air.) This “push-pull” action applies to a full differential (supply pressure to atmosphere) across the actuator to drive the valve to the position required by the control instrument signal.

Model 74 Valve Positioners can also be used for single-acting service on a spring-loaded actuator. In this case, one of the pilot-booster connections is plugged. See below for rotary-type actuators.

Specifications
Input Ranges
3-15, 3-9, 3-27, 0-15, and 0-30 psig including split ranges within these basic ranges

Valve-Stroke Ranges¹
1/4" minimum
48" maximum

Supply Pressure
3 psig above full actuator pressure minimum
150 psig maximum

Air Consumption
0.2 scfm (inbalanced condition with 20 psig supply)

Overload Protection
150 psig at any connection

Response Level
Output is sensitive to control signal changes as small as 0.1% of full range

Ambient Temperature Range
-40 to 180°F (-40 to 82°C)

Materials of Construction
Aluminum, brass, stainless steel, and Buna-N

Rotary Actuators Kit
The Series 74 Rotary Actuator Kits allows for compact installation of a complete assembly (positioner and mounting) to fit inside a 5”x5”x2-2/3” envelope. The kit’s direct connected feedback spring eliminates error-prone connections and levers, while its spiral feedback spring provides inherent reliability.

Response Level
0.1% F.S.

Linearity
±1.5% F.S.

Input Range
3-9, 9-15, 3-15 psig

Actuator Motion
90° Rotation

¹) See next page for additional performance data, design specifications, and a range spring selection chart.
²) 9-15 psig range requires a suppression spring.
Valve Positioners
Series 74 Valve Positioners

Ordering data

Model Number

<table>
<thead>
<tr>
<th>Valve Positioner</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>74-</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>S</td>
</tr>
<tr>
<td>Standard Pilot & Standard Gain</td>
<td>G</td>
</tr>
<tr>
<td>Stabilizing Pilot & Reduced Gain</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>-1</td>
</tr>
</tbody>
</table>

Accessories

- Rectilinear Range Spring Kits - Rectilinear range spring kits include a range spring, zero screw, (2) range spring seats, and instructions. All kits include the (2) range spring seats, P/N 12372-384 (not listed below).
- Rotary Range Spring Kits - The table below lists the kit numbers, spring assembly numbers, and their color codes.
- Zero Suppression Spring Kits - Zero suppression spring kits include a suppression spring and a spring seat. All kits include the P/N 12372-254 spring seat (not listed below).

Range Spring Kit Table

<table>
<thead>
<tr>
<th>Acuator Stroke - Inches -</th>
<th>Kit and Parts</th>
<th>Instrument Input Pressure Range - psig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 to 1-1/2</td>
<td>Kit No.</td>
<td>3-15</td>
</tr>
<tr>
<td></td>
<td>Spring No.</td>
<td>3-9</td>
</tr>
<tr>
<td></td>
<td>Color Code</td>
<td>3-27</td>
</tr>
<tr>
<td></td>
<td>Screw No.</td>
<td>0-30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0-15</td>
</tr>
<tr>
<td>1-1/2 to 2-3/4</td>
<td>Kit No.</td>
<td>14995-101</td>
</tr>
<tr>
<td></td>
<td>Spring No.</td>
<td>14996-1</td>
</tr>
<tr>
<td></td>
<td>Color Code</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td>Screw No.</td>
<td>12372-274</td>
</tr>
<tr>
<td>2-3/4 to 4</td>
<td>Kit No.</td>
<td>14995-102</td>
</tr>
<tr>
<td></td>
<td>Spring No.</td>
<td>14996-2</td>
</tr>
<tr>
<td></td>
<td>Color Code</td>
<td>White</td>
</tr>
<tr>
<td></td>
<td>Screw No.</td>
<td>12372-273</td>
</tr>
<tr>
<td>4 to 6</td>
<td>Kit No.</td>
<td>14995-103</td>
</tr>
<tr>
<td></td>
<td>Spring No.</td>
<td>14996-3</td>
</tr>
<tr>
<td></td>
<td>Color Code</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td>Screw No.</td>
<td>12372-273</td>
</tr>
<tr>
<td>6 to 9</td>
<td>Kit No.</td>
<td>14995-119</td>
</tr>
<tr>
<td></td>
<td>Spring No.</td>
<td>14996-102</td>
</tr>
<tr>
<td></td>
<td>Color Code</td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td>Screw No.</td>
<td>12372-292</td>
</tr>
<tr>
<td>9 to 12</td>
<td>Kit No.</td>
<td>14995-120</td>
</tr>
<tr>
<td></td>
<td>Spring No.</td>
<td>14996-106</td>
</tr>
<tr>
<td></td>
<td>Color Code</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Screw No.</td>
<td>12372-3034</td>
</tr>
<tr>
<td>12 to 19</td>
<td>Kit No.</td>
<td>14995-118</td>
</tr>
<tr>
<td></td>
<td>Spring No.</td>
<td>14996-110</td>
</tr>
<tr>
<td></td>
<td>Color Code</td>
<td>Orange</td>
</tr>
<tr>
<td></td>
<td>Screw No.</td>
<td>12372-303</td>
</tr>
<tr>
<td>48</td>
<td>Kit No.</td>
<td>14995-121</td>
</tr>
<tr>
<td></td>
<td>Spring No.</td>
<td>14996-111</td>
</tr>
<tr>
<td></td>
<td>Color Code</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Screw No.</td>
<td>12372-296</td>
</tr>
</tbody>
</table>

Instrument Input Pressure Range - psig

- N/A
- Consult Factory
Valve Positioners

Series 74 Valve Positioners

Technical data

Rotary Range Spring Kit

<table>
<thead>
<tr>
<th>Instrument Input Range -psig-</th>
<th>Instrument Input Range -psig-</th>
<th>Instrument Input Range -psig-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-9</td>
<td>3-15</td>
<td>3-9</td>
</tr>
<tr>
<td>Consult</td>
<td>14923-154</td>
<td>Consult</td>
</tr>
<tr>
<td>Factory</td>
<td>14923-70 White</td>
<td>Factory</td>
</tr>
<tr>
<td>Consult</td>
<td>14923-104</td>
<td>Consulting Kit No.</td>
</tr>
<tr>
<td>Factory</td>
<td>14923-71 Red</td>
<td>Kit Supplied With Mounting Plate</td>
</tr>
<tr>
<td>Consult</td>
<td>14923-154</td>
<td>Consult</td>
</tr>
<tr>
<td>Factory</td>
<td>14923-70 White</td>
<td>Factory</td>
</tr>
<tr>
<td>Consult</td>
<td>14923-103</td>
<td>Kit Supplied With Mounting Plate</td>
</tr>
<tr>
<td>Factory</td>
<td>14923-71 Red</td>
<td>Kit Supplied With Mounting Plate</td>
</tr>
<tr>
<td>Mounting Plate Color Code</td>
<td>Mounting Plate Color Code</td>
<td>Mounting Plate Color Code</td>
</tr>
<tr>
<td>White</td>
<td>Red</td>
<td>White</td>
</tr>
<tr>
<td>Red</td>
<td>White</td>
<td>Red</td>
</tr>
</tbody>
</table>

Mounting Dimensions

- The actuator extension shaft must be 0.3125" ±0.0010" and capable of withstanding 100 inch-pounds of torque (pinned assembly recommended).

- Installer to drill and mount the base plate so that the appropriate feedback hole (clockwise or counter-clockwise rotation) is concentric with actuator extension shaft.

Mounting Dimensions, Rotary Kit

- 0.187" 0.47cm
- 5.0" 12.7cm
- 3.156" 8.01cm
Transducers
Models 77 and 771 Current-to-Pneumatic Transducers

Introduction

Features & Benefits
- High signal sensitivity for demanding applications
- Simplified design ensures simplified operation
- Rugged, NEMA construction, with insensitivity to shock, vibration, and supply pressure variations accommodate operation in harsh industrial environments
- Choice of output capacities provides application versatility

Description

The Models 77 and 771 convert a DC millampere input signal to a pneumatic output signal directly proportional to the input. Their rugged design and ability to withstand shock and vibration allow them to be installed in even the harshest industrial environments.

Model 77 Current-to-Pneumatic Transducer

The Model 77 Current-to-Pneumatic Transducer, which was designed specifically for measuring circuits, converts the output of an electronic measuring device to a pneumatic signal for indication, recording, computation, or control. It can also be used to convert an electronic controller's signal to operate a final control element, such as a control valve circuit that requires a high degree of accuracy.

The Model 77 is typically used to signal a valve positioner. If it is used for direct-loading of valve actuators or other large volumes, a volume booster relay is required to minimize time lags and the effects of leakage.

Model 771 Current-to-Pneumatic Transducers

The Model 771 Current-to-Pneumatic Transducers were designed as a cost-effective valve service current-to-pneumatic transducer.

The Model 771 receives the output signal of an electronic device, such as a PID control function, and drives a control valve via the transducer until the control function is satisfied. For measuring circuits, or for control circuits requiring a higher degree of transducing accuracy, the Model 77 should be used.

Because it’s boosted output capacity minimizes time lags and the effects of leakage, the Model 771B should be used for direct-loading of valve actuators or other large volumes. If the valve actuator includes a valve positioner, a Model 771S should be used.

Specifications – Model 77

Functional Specifications
Supply Pressure
20 psig, ±2 psig for 3-15 psig output
30 psig, ±2 psig for 3-27 psig output
Input/Output Data
See Model Selection
Model 77
For general purpose and non-incendive applications
Model 77F
For intrinsically-safe applications
Zero Offset Adjustment
+40% and -20% of span
Pneumatic Connections
1/4" NPT
Output Capacity
0.16 scfm
Supply Pressure Effect
Less than 1% of span (change of output for supply change from 18 to 22 psig)
Temperature Range
-40 to 180°F (-40 to 82°C)
Electrical Connections
Enclosed terminal block, 1/2" threaded
Surface Mounting
Two 1/4 x 20 x 5/16" deep blind tapped holes

Enclosure
NEMA 3R
NEMA 4 via conduit vent

Electrical Classification
FM Approved
Model 77
Non-incendive for Class I, Div. 2, Groups A, B, C, D.
Dust-ignition proof for Class II, Div. 1, Groups E, F, G.
Suitable for Class III, Div. 1 hazardous locations and
NEMA 4.
Model 77XXF
Intrinsically safe for Class I/II/III, Div. 1, Groups A, B, C, D, E, F, G and NEMA 4 when used with approved
barriers and converters listed on Siemens drawing #15032-7704/7705.

Performance Specifications
Calibration Accuracy
±0.25% of span
Reproducibility
0.2% of span
Response Level
0.025% of span

Model Number
Current-to-Pneumatic
Transducer

Exhaust
• Atmospheric
• Tapped Exhaust

Input/Output

<table>
<thead>
<tr>
<th>Input Range (mA dc)</th>
<th>Output Range (psig)</th>
<th>Impedance (Ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 5</td>
<td>3 to 15</td>
<td>2450</td>
</tr>
<tr>
<td>0 to 4</td>
<td>3 to 15</td>
<td>2450</td>
</tr>
<tr>
<td>4 to 20</td>
<td>3 to 27</td>
<td>610</td>
</tr>
<tr>
<td>4 to 20</td>
<td>3 to 15</td>
<td>185</td>
</tr>
<tr>
<td>10 to 50</td>
<td>3 to 15</td>
<td>30</td>
</tr>
</tbody>
</table>

Intrinsically-Safe Designation
• Intrinsically Safe (omit for other classifications)

Accessories
• Reverse Acting Output

Specifications – Series 771
Functional Specifications
Supply Pressure
20 psig (35 psig for 771-8_ _ _)
Input/Output Data
See Model Selection
Zero Offset Adjustment
+40% and –20% of span
Output Capacity
Standard: 0.16 scfm
Boosted: 2.0 scfm
Supply Pressure Effect
Less than 2% of span (change of output for supply
change from 18 to 22 psig)
Temperature Range
-40 to 180°F (-40 to 82°C)
Electrical Connections
Enclosed terminal block, 1/2" threaded
Enclosed
NEMA 3R
NEMA 4 via conduit vent
Electrical Classification
FM Approved
Series 771_ _ _ F1: Intrinsically safe for Class I/II/III, Div. I,
Groups A, B, C, D, E, F, G when used with approved
barriers and converters listed on Siemens drawing #15032-7704/7705.
Series 771_ _ _ F2: Non-incendive for Class I, Div. 2,
Groups, A, B, C, D. Dust-ignition proof for Class II, Div. 1,
Groups E, F and G. Suitable for Class III, Div. 1 hazardous
locations.

Performance Specifications
Calibration Accuracy
±1/2% of span standard unit
±1% of span boosted unit
Reproducibility
0.2% of span
Response Level
0.025% of span

1) Other input ranges available; 0 - 3 mA to 0-60 mA, consult factory.
Transducers
Models 77 and 771 Current-to-Pneumatic Transducers

Ordering data

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current-to-Pneumatic Transducer</td>
<td></td>
</tr>
<tr>
<td>Input/Output</td>
<td></td>
</tr>
<tr>
<td>Input Range</td>
<td>Output Range</td>
</tr>
<tr>
<td>(mA dc)</td>
<td>(psig)</td>
</tr>
<tr>
<td>1 to 5</td>
<td>3 to 15</td>
</tr>
<tr>
<td>4 to 20</td>
<td>3 to 27</td>
</tr>
<tr>
<td>4 to 20</td>
<td>3 to 15</td>
</tr>
<tr>
<td>10 to 50</td>
<td>3 to 15</td>
</tr>
</tbody>
</table>

Output Capacity
- Boosted
- Standard

Terminal Strip

Electrical Approval
- None Required
- Intrinsically Safe
- Non-incendive

Accessories
- P/N 12330-100 - Wall Mount Bracket
- P/N 12334-130 - Pipe Mounting Bracket
- Reverse Acting (not available on the Model 771-8)
 Increase input; decrease output. Add “R” to model number.

Mounting Dimensions – Model 77

![Mounting Dimensions Diagram](image)

NOTES:
1. ALL CONNECTIONS ARE 1/4 NPT EXCEPT AS SHOWN.
2. MUST BE MOUNTED VERTICALLY (≤10°) AS SHOWN
3. FLAT ADAPTER PLATE (P/N 12330-100) AVAILABLE TO MOUNT TRANSUDCER ON A BLIND WALL.
Mounting Dimensions – Model 771 S/B

NOTES:
1. Sealing screw must not be removed in a Class II hazardous location or under any NEMA 4 condition.
2. Dimensions are shown in inches and (millimeters).
3. Clearance of at least 5" (127mm) must be left above the top when mounting the transducer to permit removal of shipping and restriction screws and top cap (standard capacity models) and retaining nut (boosted models).
4. Transducer must be installed so that water cannot enter booster exhaust under NEMA 4 conditions (boosted models).
5. Transducer must be installed within 10° of vertical.
Features & Benefits

- Multi-stage, low-droop precision regulators maintain constant output over wide changes in flow and supply pressure
- Epoxy powder coat paint delivers improved corrosion resistance
- Wide selection of regulated pressures [1" to 450 psi] affords application versatility
- Patented Nullmatic pressure regulation system provides reliable maintenance-free operation

Description

The Models 40, 41, and 42 Precision Pressure Regulators control air pressures in applications where precise and dependable regulation is required, such as pneumatic instrument circuits, test stands, production checking fixtures, and industrial air gages. As such, they are suitable for dead-end service, and flows up to a maximum of 110 scfm.

A unique, two-stage piloted design provides outstanding accuracy. Rugged construction—with no links, levers, pivots, or other friction-producing members—ensures reliable, maintenance-free operation. These features allow a regulator to maintain constant output pressure, regardless of even the widest changes in flow or supply pressures. In fact, a regulator using a Model 40, 41, or 42 is practically a self-contained pressure controller operating its supply-plunger valve via a built-in, high-gain pneumatic amplifier.

A fine-turn, precision screw is used to manually load the range spring, which sets the regulated pressure. When the adjusting knob is turned clockwise, the increased spring force is exerted on the top diaphragm assembly, decreasing the nozzle clearance and increasing the pilot pressure. Because the source for pilot pressure is supply air flowing to the pilot pressure chamber through the restriction screw, the increased pilot pressure forces the exhaust diaphragm assembly downward. This action closes the exhaust port, and contacts and moves the valve plunger, which opens the supply port. This increases the regulated output, which also feeds back to the top diaphragm assembly. The regulator locks-up or throttles at the new output value when the feedback force of the top diaphragm assembly equals the range spring force.

A safety release valve is incorporated in the top diaphragm assembly of several models. It operates if the regulated pressure increases 3 psig more than the set pressure and exhausts air through the atmospheric vent in the top housing. Overpressure causes the diaphragm to move upward, which opens the safety release valve.

Specifications

Resolution Adjustment
Better than 0.03% of regulated output

Supply Pressure
Maximum & recommended pressures are listed on page 4.5
Minimum: 5 psig above regulated output

Supply Pressure Effect
Nominal ratio of change in regulated pressure for a change in supply
1:150 for Model 40 and 42
1:100 for Model 41

Ambient Temperature Limits
-40 to 180°F (-40 to 80°C)

Ambient Temperature Effect
Approximately 1% of set pressure with standard range spring, for 50°F (27°C) temperature change

Knob Adjustment
Model 40 & 42: Nominal 10% of full range for one complete turn
Model 41: Nominal 15% of full range for one complete turn

Droop Effect
See Graph 1

Maximum Air Flow
See Graph 2
Regulators
Models 40, 41, and 42 Precision Pressure Regulators

Technical data

Air Consumption
See Graph 3

Drift Effect
See Graph 4

Exhaust-Flow Rate (at 25-psig setting)
Pressure rise of 0.25 psig will result from flow of:
- Model 40: 1.5 scfm
- Model 41: 2.4 scfm
- Model 42: 1.7 scfm

Maximum Flow Capacity
See Graph on page 4.4

Standard Mounting
In-line pipe or flush panel up to 1/4" thick (bushing for 3/4" thick panel is optional)
Connections: (supply and outlet)
- Model 40: 1/4" NPT
- Model 41: 1/8" NPT
- Model 42: 1/2" NPT

Materials of Construction (materials in contact with regulated media)
Brass, stainless steel, Neoprene, aluminum, and zinc

Options

Air Loading
Provision for supplementary air loading (100 psig max) in addition to spring loading
- Model 42: 1/4" NPT
- Model 41: 1/8" NPT
- Model 40-2: Not available
Add [A] into the model number.
Example: 40A15

Tapped Exhaust
Provision for piping exhaust flow away from the regulator
- Model 42: 1/8" NPT
- Model 40 & 41: Not available
Add [E] into the model number.
Example: 42E15

Deletion of Safety release Valve (SRV)
The SRV increases exhaust flow capacity when the regulator must exhaust large flows. Deletion of the SRV will improve drift characteristics (see Graph 4). The SRV is not available with the Siemens 41. It is standard with:
- Model 40: 2, 7, 15, 30, 50 & H50 pressure ranges
- Model 42: 15, 30, 50, H30, & H50 pressure ranges
To delete the SRV, add an [X] into the model number.
Example: 40X15

Accessories

- P/N 2932-19 - Mounting Bracket for surface mounting (Model 40 and Model 42)
- P/N 10963-73 - Mounting Bracket for surface mounting (Model 41)
- P/N 3603-22 - Locknut
Test Procedure: Each 30-psig-range regulator was adjusted to 25 psig with 100 psig supply and no flow. Flow was increased to maximum capacity. All regulated pressure readings were taken at gauge connection in the body of the regulator.
Regulators
Models 40, 41, and 42 Precision Pressure Regulators

Technical data

Graph 2 Maximum Air Flow, SCFM Delivered

Graph 3 Air Consumption

Graph 4 Drift Effect

Test Procedure: Regulators were set at 20 psig output with 100 psig air supply. Supply was turned off for one week, after which supply was turned on at time 0.

The Nullmatic regulator bleeds only the amount of air that passes through the pilot nozzle when there is no demand for output flow. The exhaust port starts to close as soon as the flow of regulated air is increased to the output, and it closes completely before the pilot-plunger valve opens. Full pilot flow is then delivered to the output.

* Supply pressure for other models will be determined by multiplying the pressure(s) above by the flow values shown below:

<table>
<thead>
<tr>
<th>Model</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 40H</td>
<td>4.5</td>
</tr>
<tr>
<td>Model 42</td>
<td>4</td>
</tr>
<tr>
<td>Model 42H</td>
<td>14</td>
</tr>
</tbody>
</table>

Graph 3 Air Consumption

Graph 4 Drift Effect

The Nullmatic regulator bleeds only the amount of air that passes through the pilot nozzle when there is no demand for output flow. The exhaust port starts to close as soon as the flow of regulated air is increased to the output, and it closes completely before the pilot-plunger valve opens. Full pilot flow is then delivered to the output.
Model Selection

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Range psig</th>
<th>Recommended</th>
<th>Maximum</th>
<th>Standard Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-2¹</td>
<td>1-50'H₂O</td>
<td>5-10</td>
<td>25</td>
<td>X</td>
</tr>
<tr>
<td>40-7</td>
<td>6-200'H₂O</td>
<td>50</td>
<td>100</td>
<td>A & X</td>
</tr>
<tr>
<td>40-15</td>
<td>0.5-15</td>
<td>75</td>
<td>150</td>
<td>A & X</td>
</tr>
<tr>
<td>40-30</td>
<td>1-30</td>
<td>120</td>
<td>150</td>
<td>A & X</td>
</tr>
<tr>
<td>40-50</td>
<td>1-50</td>
<td>120</td>
<td>150</td>
<td>A & X</td>
</tr>
<tr>
<td>40-100</td>
<td>1.5-100</td>
<td>150</td>
<td>500</td>
<td>H & A</td>
</tr>
<tr>
<td>40-200</td>
<td>3-200</td>
<td>250</td>
<td>500</td>
<td>A</td>
</tr>
<tr>
<td>40-300</td>
<td>7-300</td>
<td>350</td>
<td>500</td>
<td>A</td>
</tr>
<tr>
<td>40-450</td>
<td>15-450</td>
<td>500</td>
<td>500</td>
<td>A</td>
</tr>
<tr>
<td>41-15</td>
<td>0.5-15</td>
<td>75</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>41N15²</td>
<td>0.5-15</td>
<td>75</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>41-30</td>
<td>1-30</td>
<td>120</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>41-50</td>
<td>1-50</td>
<td>120</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>41-100</td>
<td>1.5-100</td>
<td>150</td>
<td>250</td>
<td>A</td>
</tr>
<tr>
<td>41-2550</td>
<td>25-50</td>
<td>120</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>42-15</td>
<td>0.5-15</td>
<td>75</td>
<td>150</td>
<td>A, E & X</td>
</tr>
<tr>
<td>42-30</td>
<td>1-30</td>
<td>120</td>
<td>150</td>
<td>H, A, E & X</td>
</tr>
<tr>
<td>42-50</td>
<td>1-50</td>
<td>120</td>
<td>150</td>
<td>H, A, E & X</td>
</tr>
<tr>
<td>42-100</td>
<td>1.5-100</td>
<td>150</td>
<td>500</td>
<td>H, A & E</td>
</tr>
<tr>
<td>42-200</td>
<td>3-200</td>
<td>250</td>
<td>500</td>
<td>A & E</td>
</tr>
</tbody>
</table>

Standard Modifications

- **H**: High flow capacity.
- **A**: With pressure-tight top housing, containing 1/4" NPT connection for supplementary air loading.
- **E**: With 1/8" NPT connection to collect exhaust
- **X**: Without safety release.

1) Includes locknut on adjusting stem (optional for all other models).
2) For use with Model 65 Square-Root Extractor to maintain minimum 3 psig output.
3) At recommended supply pressure.
Regulators
Models 40, 41, and 42 Precision Pressure Regulators

Dimensional drawings

Mounting Dimensions

Model 40
- 0.25° (6.4mm) Max. panel
- 2.812° (71.4mm) Max for air-loaded
- 2.25° (57.1mm) Max. for all others
- 3.375° (8.57cm)
- 5.187° (131.7mm)*
- Connections = 1/8° NPT

Model 41
- 0.25° (6.35mm)
- 1.375° (34.9mm)
- Max. panel
- 3.187° (80.9mm)
- Regulated Output
- 2.25° (57.1mm)
- (Connections = 1/8"

Model 42
- 0.25° (6.35mm) Max. panel
- 2.812° (71.4mm) Max.
- 7.0° (177.8mm)*
- Regulated Output
- 5.0°
- 12.7cm
- *Add 0.125° 0.31cm for 200 psig Models
 (Connections = 1/2° NPT)
Features & Benefits

- Stable output and repeatability - provides constant control under variable flow rates and supply pressures.
- Corrosion-resistant construction - aluminum die-castings are finished with Irridite and baked epoxy paint.
- Depth filter - unit comes equipped with high capacity 3 micron filter housed in drip-well.
- Self-Relieving
- Low droop at high flow levels - aspirator design helps maintain set pressure at higher flow levels.
- Tight shut-off - a soft, rubberized valve provides a positive shut-off and compensates for dirt and other foreign matter.

Description

The Model 91-HF Filter-Regulator is designed to provide clean, accurate air pressure to valve positioners, and other pneumatic control equipment. The filter regulator has been proven to provide long lasting corrosion resistance in harsh industrial environments. The model 91-HF filter regulator is a quality unit that is ideal as an economical alternative for control of process applications. The Model 91-HF is used extensively to supply air to pneumatic controllers, transmitters, transducers, valve positioners, air cylinders, and a wide range of pneumatic control systems.

Specifications

Performance Specifications

Output Range
0-120 psig (0-800 kPa)

Maximum Supply Pressure
150 psig (1034 kPa)

Flow Capacity
22 SCFM (37.0 m³/hr) at 100 psig (700 kPa)

Exhaust Capacity
0.1 SCFM (0.17 m³/hr) with downstream pressure 5 psig (35 kPa) above set point

Sensitivity
1" (2.5 cm) of water

Air Consumption
Less than 5 SCFM (0.17 m³/hr)

Effect of Supply Pressure Variation
Less than 0.2 psig (1.4 kPa) for 25 psi (170 kPa) change

Ambient Temperature Limits
0 to 160°F (-18 to 71°C)

Mechanical Specifications

Mounting
Pipe or through body

Weight
1.6 lb (725 g)

Port Size
(In, Out, and Gauge) 1/4" NPT

Materials of Construction
Body: Die-cast aluminum alloy. Irridite and baked Epoxy finish
Filter: 3 micron Phenolic impregnated Cellulose
Diaphragm: Nitrile Elastomer and Nylon fabric
Valve Seat Plug: Nitrile Elastomer

Additional Materials: Brass, Zinc plated steel, Acetal
Features & Benefits
- Solid brass construction delivers exceptional durability
- Natural wool filter medium provides unsurpassed coalescing action

Description
The Model 2306 instrument air filter is used to remove dirt, oil, water, and other impurities from an instrument-air supply. This highly efficient instrument-air filter uses the principle of coalescence to trap fine particles in a dripwell.

Air enters the filter through the inlet connected to a cylindrical filter cartridge. After the air is filtered as it passes through the cartridge, it flows up between the cartridge and the outer housing.

As the air flows downward through the lamb’s wool filtering medium, oil and water particles coalesce. The steady blow down action of the incoming air maintains high filtering efficiency by cleaning the filter cartridge continuously, while the natural force of gravity forces the coalesced materials to collect at the bottom of the dripwell.

A simple petcock permits the filter to be blown down periodically. If accumulated dirt and scale make it necessary to replace the filter cartridge, the replacement may be effected without disturbing inlet and outlet connections by turning the housing out of the cap.

Specifications
Functional Specifications
Recommended Flow for Optimum Efficiency
0.5 scfm at 75 psig (14 dm³/min at 520 kPa)
Maximum Supply Pressure
1000 psig (69 bar)

Performance Specifications
Pressure Droop Through Filter with 75 psig Supply
Pressure and 0.5 scfm flow approximately 1/4 psi (2 kPa)

Materials of Construction
Brass, aluminum, lamb’s wool, and neoprene.

Mounting Dimensions
2.375" (60.3mm)
8.031" (203.9mm)
Max.
All connections 1/4" NPT

1) Flow capacities at higher or lower supply pressures will vary in direct proportion to the absolute pressure.
Relays
Series 61 Booster Relays

Introduction

Features & Benefits
- Force-balance principle produces a proportional output for pneumatic circuit flexibility
- Built-in stability needle valve on the 61H and 61VH minimizes piping needs
- Improved valve stroking speed for better process control
- Epoxy powder coating provides improved corrosion resistance
- Accurate 1:1 signal relay provides pneumatic circuit design flexibility

Description
The Series 61 Booster Relays reproduce pneumatic signals in a 1:1 ratio for applications where input isolation or increased flow capacity are required. Various models are available to meet a wide range of requirements.

Valve Service
Model 61H High-Capacity Booster Relay
The Model 61H High-Capacity Booster Relay was designed to improve the stroking speed of large diaphragm valves. As such, it incorporates a stabilizing bypass needle valve between the input and output, eliminating the need for an externally piped bypass.

Model 61VH High-Capacity Booster Relay
The Model 61VH High-Capacity Booster Relay was designed for use on control valve actuators that require very fast stroking speeds. As such, it incorporates a stabilizing bypass needle valve between the input and output, eliminating the need for an externally piped bypass.

Pneumatic Control
Model 61L Moderate Accuracy Booster Relay
The Model 61L Moderate Accuracy Booster Relay combines moderate accuracy with a moderate capacity (approximately 4.5 scfm output at 9 psi). Like the Model 61H relay, this instrument is used primarily in straightforward valve-booster applications.

Model 61F High Accuracy Booster Relay
The Model 61F High Accuracy Booster Relay via the sensitive preformed diaphragms in this relay provides greater accuracy in 1:1 transmission. Its output capacity is about 1/4 that of the Model 61L. As such, it is suitable for use in measuring circuits.

Model 61H is shown

Model 61FE Booster Relay
The Model 61FE Booster Relay is similar to the Model 61F; however, it also includes a 1/8" NPT connection for those applications where a tapped exhaust is required.

Operation
Input pressure, acting upon the effective area of the upper diaphragm, produces a force that is opposed by the output pressure exerted upon the effective area of the lower diaphragm. The opposing forces are in a direct 1:1 ratio. As such, any increase in the input pressure will depress the diaphragm assembly and open the pilot valve to admit a sufficient supply of air to the output. This re-balances the input pressure. A decrease in input pressure will cause the diaphragm assembly to lift off the exhaust port, which reduces the output and re-balances the input.
Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>61H</th>
<th>61L</th>
<th>61F & 61FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Input & Output Pressure</td>
<td>3-15</td>
<td>3-15</td>
<td>3-15</td>
</tr>
<tr>
<td>Maximum Input Pressure</td>
<td>100 psi</td>
<td>100 psi</td>
<td>50 psi</td>
</tr>
<tr>
<td>Maximum Supply Pressure</td>
<td>100 psi</td>
<td>100 psi</td>
<td>50 psi</td>
</tr>
<tr>
<td>Overload Protection to any Connection</td>
<td>100 psi</td>
<td>100 psi</td>
<td>100 psi</td>
</tr>
<tr>
<td>Accuracy of 1:1 Ratio</td>
<td>5%</td>
<td>2%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Zero Error</td>
<td>----</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Reproducibility(^1)</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Linearity(^2)</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Ambient Temperature Limits</td>
<td>-40 to 180°F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Capacity(^3)</td>
<td>10.5 scfm</td>
<td>4.5 scfm</td>
<td>2.4 scfm</td>
</tr>
</tbody>
</table>

1) These performance figures are based on a 3-15 psi input.
2) Flow causes output pressure to drop 1 psi at 9 psi output with 20 psi supply.
Relays
Model 61H Booster Relays

Technical data
Features & Benefits

The ability to maintain constant-differential pressure drop across a built-in needle valve ensures a constant volumetric flow rate.

Maintains constant bubbling rate in liquid level applications, eliminating the problems of typical conventional bubbling systems.

The ability to produce reasonable purge rates eliminates the need for a supply regulator.

Epoxy powder coating provides improved corrosion resistance.

Description

The Series 62 Constant-Differential Relays serve as air-flow controllers maintaining a constant air purge for each setting of an integral needle valve.

By maintaining a constant-differential pressure drop across a built-in needle valve (for any flow setting up to 2.1 cu ft of air per hour), Series 62 Relays ensure a constant volumetric rate of flow, regardless of variations in process or supply pressure.

The constant-differential pressure across the built-in needle valve is regulated by a spring-loaded diaphragm. This diaphragm controls the action of the supply-port plunger, which automatically admits supply air to the needle valve at the required rate. Excess purge air bleeds to the atmosphere.

Siemens constant-differential relays eliminate most of the problems encountered in conventional bubbling systems, because:

Each relay holds the bubbling rate constant, thereby maintaining high measurement accuracy.

The differential pressure maintained across the needle valve is approximately 1-1/2 psi, which allows wider needle valve openings that are less subject to clogging.

Full supply pressure (up to 150 psig) is connected to the purge system for a greater margin of safety.

Ordinary air-line impurities have no effect.

In addition to the preceding advantages, the Series 62 Constant-Differential Relays ensure reasonable purge rates at all times, because they eliminate the need for a supply regulator. Another safety feature is the automatic exhaust, which bleeds off any excess air caused by the presence of foreign particles on the pilot seat of the supply-port plunger.

Specifications

Supply Pressure

Maximum: 150 psig
Minimum: 5 psi above highest output pressure required

Rotometer Pressure

Maximum: 200 psig (1380 kPa)

Supply Pressure Effect

0.18 scfh (max.) flow change for 25 psi increase of supply

Ambient Temperature Limits

-40 to 180°F (-40 to 82°C)
-40 to 160°F (-40 to 71°C) with Rotometer

Materials of Construction

Relay: Aluminum, brass, stainless steel, Neoprene, Buna-N
Rotometer: Aluminum, Stainless steel, Borosilicate glass, Buna-N (O-rings), ruby sapphire (float), and brass (fittings)
Model Number
Constant-Differential Relay

Order No.

Purge Rate
- 0.08 to 2.1 scfh\(^1\)
 Built-in needle valve has internal bypass to prevent tight shut-off of purge flow
- 0.06 to 1.8 scfh\(^1\)
 Built-in needle valve provides tight shut-off of purge flow

Flow indicator\(^2\)
- Indicating Rotometer
 0.25 to 2.5 scfh scale range
 Letter omitted - Less Rotometer

Mounting Dimensions

1) With a relay or rotometer outlet at atmospheric pressure.
2) A flow indicator is recommended for use with the Model 62/VN.
Relays
Series 63 Constant Differential Flow Controllers

Introduction

Features & Benefits
- Versatile and design accommodates liquids or gases and wide range of OEM needs.
- Powder coating provides improved corrosion resistance.

Description
The Series 63 Constant-Differential Relays are used in conjunction with an external needle valve to provide constant volume flow rates of liquids or gases over a continuously adjustable range.

For gas flow applications, compressibility must be considered if a constant mass flow is desired. Therefore, models are available for constant upstream or downstream reference pressure.

For liquids, which are not compressible, the constant volume flow will also be a constant mass flow, regardless of upstream or downstream pressures. As such, mass flow is independent of pressure changes.

The relay's needle valve determines rangeability and capacity. Four models are available.

Specifications
Range Limits
@20 psig supply
Model 63BU & Model 63SU
Maximum: 1.1 scfm
Minimum: 0.01 scfm
Model 63BUL & Model 63SUL
Maximum: 2800 scfm
Minimum: 13 scfm

Supply Pressure
Minimum: At least 5 psi greater than the maximum downstream pressure of the needle valve-controller combination

Maximum:

<table>
<thead>
<tr>
<th>Model</th>
<th>Closed</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>63BU</td>
<td>50 psi</td>
<td>250 psi</td>
</tr>
<tr>
<td>63BUL</td>
<td>50 psi</td>
<td>250 psi</td>
</tr>
<tr>
<td>63SU</td>
<td>100 psi</td>
<td>500 psi</td>
</tr>
<tr>
<td>63SUL</td>
<td>50 psi</td>
<td>500 psi</td>
</tr>
</tbody>
</table>

Ambient Temperature Limits
Model 63BU & Model 63BUL: -40 to 180°F (-40 to 82°C)
Model 63SU & Model 63SUL: -40 to 250°F (-40 to 121°C)

Controlled Differential
3.1 ± 5 psi (others optional)

Materials

<table>
<thead>
<tr>
<th>Bras Units</th>
<th>316 SS Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body</td>
<td>Brass</td>
</tr>
<tr>
<td>Diaphragm</td>
<td>Neoprene</td>
</tr>
<tr>
<td>Differential Spring</td>
<td>18-8 SS</td>
</tr>
<tr>
<td>Valve Plunger & Seat</td>
<td>303 SS</td>
</tr>
<tr>
<td>Plunger Spring</td>
<td>(used in “D” 63BD models only) 63BD-L</td>
</tr>
</tbody>
</table>

Ratings
Ambient Temperature
-40 to 180°F (-40 to 82°C)
Flow Capacity Formula

<table>
<thead>
<tr>
<th></th>
<th>Higher Range Models 63BD and 63SD; 638U and 63SU</th>
<th>Low Flow Models 63BD-L and 63SD-L; 63BU-L and 63SU-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAS FLOW-CAPACITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum at less than critical flow</td>
<td>SCCM = 4000 (\sqrt{\frac{\Delta P \times P_d \times 530}{S_G}})</td>
<td>SCCM = 400 (\sqrt{\frac{\Delta P \times P_d \times 530}{S_G}})</td>
</tr>
<tr>
<td>Maximum at critical flow</td>
<td>SCCM = 2000 Pu (\sqrt{\frac{1 \times 530}{S_G}})</td>
<td>SCCM = 200 Pu (\sqrt{\frac{1 \times 530}{S_G}})</td>
</tr>
<tr>
<td>Minimum controllable flow</td>
<td>Approximately 1/200 of maximum</td>
<td>SCCM = 8 (\frac{\Delta P (P_u + P_d)}{R_v \times T})</td>
</tr>
<tr>
<td>LIQUID FLOW-CAPACITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>CCM = 470 (\sqrt{\frac{\Delta P}{S_G}})</td>
<td>CCM = 47 (\sqrt{\frac{\Delta P}{S_G}})</td>
</tr>
<tr>
<td>Minimum</td>
<td>Approximately 1/200 of maximum</td>
<td>CCM = 0.06 (\sqrt{\frac{\Delta P}{R_v \times T}})</td>
</tr>
</tbody>
</table>

NEEDLE VALVE SIZING (With 3 psi drop across valve)

For any liquid:

\[
K_n = \frac{CCM}{6550 \left(\frac{T}{S_G} \right)}
\]

For any gas:

\[
K_n = \frac{SCCM}{49000 \left(\frac{T}{P_n \times 530 \left(\frac{S_G}{T} \right)} \right)}
\]

Mounting Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>DIM. A</th>
<th>DIM. B</th>
</tr>
</thead>
<tbody>
<tr>
<td>63BU</td>
<td>2 1/8"</td>
<td>3 1/4"</td>
</tr>
<tr>
<td>63BUL</td>
<td>2 1/8"</td>
<td>3 1/4"</td>
</tr>
<tr>
<td>63SU</td>
<td>2 3/8"</td>
<td>3 1/2"</td>
</tr>
<tr>
<td>63SUL</td>
<td>2 3/8"</td>
<td>3 1/2"</td>
</tr>
<tr>
<td>63ED</td>
<td>2 1/8"</td>
<td>3 1/2"</td>
</tr>
<tr>
<td>63BDL</td>
<td>2 1/8"</td>
<td>3 1/2"</td>
</tr>
<tr>
<td>63SD</td>
<td>2 3/8"</td>
<td>3 3/4"</td>
</tr>
<tr>
<td>63SDL</td>
<td>2 3/8"</td>
<td>3 3/4"</td>
</tr>
</tbody>
</table>

For gases with constant upstream pressure:

- 3.425" (82mm)
- 2.375" (60.3mm)

For gases with constant downstream pressure:

- 3.052" (7.75mm)
- 3.375" (85.7mm)

All connections are 0.25" NPT

Note: Dimensions for 63D are mirrored from 63U

1) Critical flow exists when the ratio of upstream pressure \((P_u)\) to downstream pressure \((P_d)\) is equal to or less than approximately 0.53
Features & Benefits
- Pneumatic signal conditioning provides control circuit design flexibility
- Powder coating provides improved corrosion resistance

Description
The Model 66 Amplifying and Reducing Relays are used to increase or decrease control-circuit pressure signals. Its input pressure, acting upon the effective area of the top diaphragm, produces a force that is balanced by the force produced by the output pressure applied over the effective area of the lower diaphragm. Any imbalance in these opposing forces will operate the plunger, increasing or decreasing air supply to the output chamber. (The amplifying or reducing ratio is fixed by the ratio of input-to-output diaphragm areas.)
An increase in input opens the pilot valve to admit supply air directly to the output. A decrease in input opens the exhaust port to exhaust air from the output.

Specifications
Function Specifications
Supply Pressure
Normal: 20 psig (140 kPa)
Maximum: 80 psig (550 kPa)
Minimum: 1 psi (7 kPa) above maximum required output
Range Limits
80 psig max. for input or output - whichever limits
Overrange Limits
100 psig (690 kPa) at any connection
Maximum Output Pressure
Within 0.1 psi (0.7 kPa) of supply
Minimum Output Pressure
Less than 0.4 psig (3 kPa) with zero output
Ratio Accuracy
Within 1% of normal ratio

Linearity
±1% of output span
Reproducibility
Within 0.02 psi (0.15 kPa)
Operating Temperature
-40 to 180°F (-40 to 62°C)
Performance Specifications
Response Level
0.2" H₂O (5 mm H₂O)
Zero Error
66BA6: ±0.36 psi (2.5 kPa)
All Others: ±0.24 (1.5 kPa)
Flow Capacity
2.2 scfm minimum
Air Consumption
0.12 scfm maximum
Mechanical Specifications
Materials of Construction
Brass, aluminum, stainless steel, and Neoprene

Values based on 20 psig supply unless otherwise noted.
Relays
Model 66 Amplifying Relay

Technical data

Input connection

3-3/8 DIA.

2-3/8

1-3/16

9/32 DIA.
2 HOLES FOR MOUNTING

1/2

2-1/2

VENT MUST BE KEPT OPEN

SUPPLY CONNECTION

OUTPUT CONNECTION

ALL CONNECTIONS ARE 1/4” N.P.T.
Relays

Model 661 Amplifying Relays with Bias

Features & Benefits

- Fixed-gain force and bias adjustment mechanisms amplify pneumatic instrument signals to provide control circuit design flexibility.

Description

Series 661 Amplifying Relays are fixed-gain force-balance instruments, which incorporate bias adjustment that amplify pneumatic instrument signals. For example, a 3-15 psi signal can be amplified to operate a 3-27 psi control valve.

The input pressure signal, acting upon the effective area of the upper diaphragm, produces a force opposed by the force produced by the output pressure applied over the effective area of the lower diaphragm and by a manually-set (constant) spring force. Any imbalance in the opposing forces will operate the pilot valve to throttle supply air to change the output until rebalance is achieved.

Plus or minus biasing of the input signal is accomplished by changing the setting of the upper biasing spring, which alters the net spring force on the diaphragm assembly.

Specifications

Supply Pressure
- Normal: 20 psig (140 kPa)
- Maximum: 80 psig (550 kPa)
- Minimum: 1 psi (7 kPa) above maximum required output

Range Limits
- 80 psig max. for input or output (whichever limits)

Overrange Limits
- 100 psig (690 kPa) at any connection

Minimum Output Pressure
- Less than 0.1 psi (0.7 kPa)

Ratio Accuracy
- Within 1% of normal ratio

Linearity
- ±1% of output span

Reproducibility
- Within 0.1% of output span

Response Level
- 0.2' H₂O (5 mm H₂O)

Bias Range
- Direct Acting: +30 psi to -15 psi (210 to -100 kPa)

Flow Capacity
- 2.2 scfm minimum (62.3 SDM³/M)

Air Consumption
- 0.15 scfm maximum (4.25 SDM³/M)

Ambient Temperature Limits
- -40 to 180° F (-40 to 82° C)

Materials of Construction
- Brass, aluminum, stainless steel, and Neoprene
Model Selection

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>661A2</td>
<td>2</td>
</tr>
<tr>
<td>661A3</td>
<td>3</td>
</tr>
<tr>
<td>661A4</td>
<td>4</td>
</tr>
<tr>
<td>661A6</td>
<td>6</td>
</tr>
</tbody>
</table>

Function Equation:
\[P_{out} = G (P_{in} \pm K) \]

Where \(P_{in} \) = input pressure
\(P_{out} \) = output pressure

Mounting Dimensions

Direct Acting

Input

Bias adjust screw

Supply

Output

3.25" (82.5mm)

4.625" (117mm)

2.375" (60mm)

0.281" (7mm)

6.875" (175mm) approx. max.

3.375" (86mm)

All connections are 1/4"NPT except where noted.
The information provided in this brochure contains merely general descriptions or characteristics of performance which in case of actual use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract.

All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.