The RUGGEDCOM RS910 from Siemens is a utility grade serial device server with an integrated, fully managed, Ethernet switch, designed to operate reliably in electrically harsh and climatically demanding environments. The RS910 can be configured with 2 serial ports (RS485/RS422/RS232) and/or up to 3 Ethernet ports (copper or fiber) and is able to interconnect multiple types of intelligent electronic devices (IEDs) that have different methods of communications. Using the RS910 results in fewer connectivity devices (which reduces overall system costs) and also extends the useful life of existing legacy IEDs (which minimizes capital expenditure for new equipment).

Designed to operate reliably in harsh environments the RS910 provides a high level of immunity to electromagnetic interference and heavy electrical surges typical of environments found in electric utility substations, curb side traffic control cabinets, and factory floors. An operating temperature range of -40°C to +85°C coupled with hazardous location compliance, optional conformal coating and a galvanized steel enclosure, allows the RS910 to be placed in almost any location.

The embedded Rugged Operating System (ROS) provides advanced cyber security features and comprehensive networking functions such as Enhanced Rapid Spanning Tree (eRSTP), Port Rate Limiting, and a full array of intelligent functionality for high network availability and manageability. Coupled with ruggedness and durability that is designed in from the onset, the RS910 is ideal for creating mission critical, real-time, control applications where high reliability and availability is of paramount importance.

All RUGGEDCOM products are backed by a five year warranty and unsurpassed technical support.
Features and Benefits

Serial Device Server
- Transmit serial data over an IP network
- 2 serial port interfaces
- RS485/RS422/RS232 (DB9 or RJ45 connectors)
- Serial fiber interface (ST) option
- Support for Modbus TCP, DNP 3, TIN serial protocols
- Baud rates up to 230 kbps
- Raw socket mode allows conversion of any serial protocol
- Point-to-point and multi-point modes
- Converts Modbus RTU to Modbus; Multiple Modbus masters
- Converts DNP3.0 to DNP over UDP/TCP

Ethernet Ports
- Integrated fully managed Ethernet switch
- Up to 3 fast Ethernet ports (copper and/or fiber)
- Supports many types of fiber (multimode, singlemode)
- Multiple connector types (ST, MTRJ, LC, SC)

Cyber Security Features
- Multi-level user passwords
- SSH/SSL/SFTP (128-bit encryption)
- Enable/disable ports, MAC based port security
- Port based network access control (802.1x)
- VLAN (802.1Q) to segregate and secure network traffic
- RADIUS centralized password management
- SNMPv3 authentication and 56-bit encryption

Rugged Operating System (ROS) Features
- Simple plug and play operation - automatic learning, negotiation, and crossover detection
- MSTP (802.1Q - 2005, formerly 802.1s)
- RSTP (802.1D-2004) and Enhanced Rapid Spanning Tree (eRSTP) network fault recovery (<5ms)
- Quality of Service (802.1p) for real-time traffic
- VLAN (802.1Q) with double tagging and GVRP support
- Link aggregation (802.3ad)
- IGMP snooping for multicast filtering
- Port rate limiting and broadcast storm limiting
- Port configuration, status, statistics, mirroring, security
- SNTP time synchronization (client and server)

Universal Power Supply Options
- Fully integrated power supply (no external adaptors)
- Popular low-voltage DC ranges: 24VDC (10-36VDC) or 48VDC (36-72VDC)
- Universal high-voltage range: 88-300VDC or 85-264VAC
- CSA/UL 60950 safety approved to +85°C
- Screw connection terminal blocks ensure reliable maintenance free connections

Rugged Operating System (ROS) Features
- Simple plug and play operation - automatic learning, negotiation, and crossover detection
- MSTP (802.1Q - 2005, formerly 802.1s)
- RSTP (802.1D-2004) and Enhanced Rapid Spanning Tree (eRSTP) network fault recovery (<5ms)
- Quality of Service (802.1p) for real-time traffic
- VLAN (802.1Q) with double tagging and GVRP support
- Link aggregation (802.3ad)
- IGMP snooping for multicast filtering
- Port rate limiting and broadcast storm limiting
- Port configuration, status, statistics, mirroring, security
- SNTP time synchronization (client and server)

Universal Power Supply Options
- Fully integrated power supply (no external adaptors)
- Popular low-voltage DC ranges: 24VDC (10-36VDC) or 48VDC (36-72VDC)
- Universal high-voltage range: 88-300VDC or 85-264VAC
- CSA/UL 60950 safety approved to +85°C
- Screw connection terminal blocks ensure reliable maintenance free connections
RUGGEDCOM RS910L

Operating Temperature
-40°C to +85°C
No fans

Fast Ethernet Ports
- Up to 3 Fast Ethernet Ports
- 10/100BaseTX or 100BaseFX
- Multiple fiber connector types

Serial Ports
- 2 RS485/RS422/RS232
- DB9 or RJ45
- Up to 230kbps
- Serial Fiber Interface Option

Serial Ports
- 2 RS485/RS422/RS232
- DB9 or RJ45
- Up to 230kbps
- Serial Fiber Interface Option

Critical Alarm Relay
- Form-C failsafe contact relay: 1A@30VDC

Mounting Options
- DIN rail
- Panel mount

Hazardous Location Compliance
- Class 1, Division 2

Rugged Construction
- 20 AWG. galvanized steel enclosure
- Conformal coating (optional)

Integrated Power Supply
- Universal high-voltage range: 88-300V DC or 85-264VAC
- Popular low voltage DC ranges: 24VDC (10-36V DC), 48VDC (36-72VDC)
- Dual Isolated DC power inputs
ROS Features

Serial IP Encapsulation
Many ‘legacy’ devices (RTU, PLC, IED, etc.) only support serial communications via RS232, RS422 or RS485. ROS encapsulates the serial data within a TCP connection allowing these devices to be reached via an IP network. A wide range of baud rates, frame packetization options, and diagnostics allows any serial protocol to function. The RS910 has specific support for the following serial protocols:
- Raw socket serial encapsulation
- Modbus TCP (client and server)
- DNP 3
- WIN and TIN
- Microlok

MODBUS TCP
The Modbus protocol is ubiquitous in the industrial control and automation world. ROS converts Modbus RTU master/slave serial data packets to Modbus TCP client/server packets for transmission over an IP network. This allows communications to Modbus RTU slaves via Ethernet and allows multiple masters to poll the same slave device.

Cyber Security
Cyber security is an urgent issue in many industries where advanced automation and communications networks play a crucial role in mission critical applications and where high reliability is of paramount importance. Key ROS features that address security issues at the local area network level include:
- Passwords – Multi-level user passwords secures switch against unauthorized configuration
- SSH / SSL – Extends capability of password protection to add 128-bit encryption of passwords and data as they cross the network
- Enable/Disable ports – Capability to disable ports so that traffic can not pass
- 802.1Q VLAN – Provides the ability to logically segregate traffic between predefined ports on switches
- MAC based port security – The ability to secure ports on a switch so only specific Devices / MAC addresses can communicate via that port
- 802.1x port based network access control – The ability to lock down ports on a switch so that only authorized clients can communicate via this port
- RADIUS – Authentication service using MD5 hash and providing centralized password management
- SNMPv3 – Encrypted authentication access security and data encryption (CBC-DES with 56-bit encryption key)
- Secure socket layer – Web-based management using SSL with data encryption (128-bit encryption key)
- RSA – 1024 bit key for key management and key exchange
- TACACS+ – Terminal Access Control and Accounting Services. Client provides encrypted authentication and authorization

Point to Point (PPP) – using CHAP (MD5 Hash) authentication service

SFTP – Secure File Transfer Protocol using SSH encryption

The ROS cyber security features are included to help address the various industry specific security standards such as NERC CIP, ISA S99, AGA 12, IEC 62443, ISO 17799:2005 and PCSRF SPP-ICS.

Enhanced Rapid Spanning Tree Protocol (eRSTP)
RUGGEDCOM eRSTP allows the creation of fault-tolerant ring and mesh Ethernet networks that incorporate redundant links that are ‘pruned’ to prevent loops. eRSTP yields worst-case fault recovery of 5ms times the ‘bridge diameter’ and allows rings of up to 160 switches. For example, a ring of ten switches will have fault recovery times under 50ms. eRSTP implements both STP and RSTP to ensure interoperability with commercial switches unlike other proprietary ‘ring’ solutions.

Quality of Service (IEEE 802.1p)
Some networking applications such as real-time control or VoIP (voice over IP) require predictable arrival times for Ethernet frames. Switches can introduce latency in times of heavy network traffic due to the internal queues that buffer frames and then transmit on a first come first serve basis. ROS supports ‘Class of Service’ in accordance with IEEE 802.1p that allows time critical traffic to jump ahead to the front of the queue thus minimizing latency and reducing jitter to allow such demanding applications to operate correctly. ROS allows priority classification by port, tags, MAC address, and IP type of service (ToS). A configurable “weighted fair queuing” algorithm controls how frames are emptied from the queues.

VLAN (IEEE 802.1Q)
Virtual local area networks (VLAN) allow the segregation of a physical network into separate logical networks with independent broadcast domains. A measure of security is provided since hosts can only access other hosts on the same VLAN and traffic storms are isolated. ROS supports 802.1Q tagged Ethernet frames and VLAN trunks. Port based classification allows legacy devices to be assigned to the correct VLAN. GVRP support is also provided to simplify the configuration of the switches on the VLAN.

Link Aggregation (802.3ad)
The link aggregation feature provides the ability to aggregate several Ethernet ports into one logical link (port trunk) with higher bandwidth. This provides an inexpensive way to set up a high speed backbone to improve network bandwidth. This feature is also known as “port trunking,” “port bundling,” “port teaming,” and “Ethernet trunk.”

1 eRSTP fault recovery times may be approximated as follows:
For 100 Mbps, fault recovery performance is <5ms/hop
For 1,000 Mbps, fault recovery performance is <5ms/hop + 20ms
ROS Features

IGMP Snooping
ROS uses IGMP snooping (Internet Group Management Protocol v1&v2) to intelligently forward or filter multicast traffic streams (e.g. MPEG video) to or from hosts on the network. This reduces the load on network trunks and prevents packets from being received on hosts that are not involved. ROS has a very powerful implementation of IGMP snooping that:
- Can be enabled on a per VLAN basis
- Detects and filters all multicast streams regardless of whether subscribers exist
- Supports “router-less” operation by supporting an “active” mode
- Restores traffic streams immediately after an RSTP topology change

SNMP (Simple Network Management Protocol)
SNMP provides a standardized method for network management stations the ability to interrogate devices from different vendors. SNMPv3 in particular provides security features such as authentication, privacy with data encryption (CBC-DES with 56-bit encryption key) and access control not present in earlier SNMP versions. ROS also supports numerous standard MIBs (Management Information Base) allowing for easy integration with any network management system (NMS). A feature of SNMP supported by ROS is the ability to generate “traps” upon system events. RUGGEDCOM NMS, the RUGGEDCOM management solution, can record traps from multiple devices providing a powerful network troubleshooting tool. It also provides a graphical visualization of the network and is fully integrated with all RUGGEDCOM products.

SCADA and Industrial Automation
ROS contains features that optimize network performance and simplify switch management based on the unique requirements found in SCADA and industrial automation applications. Features such as Modbus TCP management for retrieval of switch data using the ubiquitous Modbus protocol and DHCP Option B2, a Rockwell Automation ODVA requirement for IP address assignment based on the location of the end device, provide capabilities not found in typical “commercial” or “office grade” Ethernet switches.

Port Based Network Access Control (802.1x)
ROS supports the IEEE 802.1x standard that defines a mechanism for port-based network access control which provides a means of authenticating and authorizing devices attached to LAN ports.

Port Rate Limiting
ROS supports configurable rate limiting per port to limit unicast and multicast traffic. This can be essential to managing precious network bandwidth for service providers. It also provides edge security for denial of service (DoS) attacks.

Broadcast Storm Filtering
Broadcast storms wreak havoc on a network and can cause attached devices to malfunction. This could be disastrous on a network with mission critical equipment. ROS limits this by filtering broadcast frames with a user-defined threshold.

Port Mirroring
ROS can be configured to duplicate all traffic on one port to a designated mirror port. When combined with a network analyzer, this can be a powerful troubleshooting tool. Port-Configuration and Status ROS allows individual ports to be ‘hard’ configured for speed, duplex, auto-negotiation, flow control and more. This allows proper connection with devices that do not negotiate or have unusual settings. Detailed status of ports with alarm and SNMP trap on link problems aid greatly in system troubleshooting.

Port Statistics and RMON (Remote Monitoring)
ROS provides continuously updating statistics per port that provide both ingress and egress packet and byte counters as well as detailed error figures. Also provided is full support for the RMON statistics, history, alarms, and event groups. RMON allows for very sophisticated data collection, analysis and detection of traffic patterns.

Event Logging and Alarms
ROS records all significant events to a non-volatile system log allowing forensic troubleshooting. Events include link failure and recovery, unauthorized access, broadcast storm detection, and self-test diagnostics among others. Alarms provide a snapshot of recent events that have yet to be acknowledged by the network administrator. An external hardware relay is de-energized during the presence of critical alarms allowing an external controller to react if desired.

HTML Web Browser and Telnet/SSH User Interfaces
ROS provides a simple, intuitive user interface for configuration and monitoring via a standard graphical web browser or via Telnet/SSH. All system parameters include detailed on-line help to make setup a breeze. ROS, presents a common look and feel and standardized configuration process allowing easy migration to other RUGGEDCOM managed products.

Configuration Via ASCII Text File
All configuration parameters are stored in an ASCII formatted text file that can easily be transferred via SFTP, TFTP, or Xmodem. The configuration file can be saved for backup purposes and easily manipulated by a text editor. The same text file can be downloaded to the switch at a later date in order to re-configure or restore a previous configuration.

Command Line Interface (CLI)
A command line interface can be used in conjunction with remote shell to automate data retrieval, configuration updates, and firmware upgrades. A powerful SQL-like capability allows expert users the ability to selectively retrieve or manipulate any parameters the device has to offer.
EMI and Environmental Type Tests

NEMA TS-2 Requirements

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Levels</th>
<th>Performance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS-2 1998, Section 2, para 2.2.7.3</td>
<td>Temperature: Low temperature/Low voltage</td>
<td>89.0V AC @ -34°C</td>
<td>EUT continued to function properly during and following all temperature and humidity testing.</td>
</tr>
<tr>
<td>TS-2 1998, Section 2, para 2.2.7.4</td>
<td>Temperature: Low temperature/High voltage</td>
<td>135.0V AC @ -34°C</td>
<td>EUT functioned properly following test procedure. No physical damage.</td>
</tr>
<tr>
<td>TS-2 1998, Section 2, para 2.2.7.5</td>
<td>Temperature: High temperature/High voltage</td>
<td>135.0V AC @ + 75°C</td>
<td>EUT functioned properly following test procedure. No physical damage.</td>
</tr>
<tr>
<td>TS-2 1998, Section 2, para 2.2.7.6</td>
<td>Temperature: High temperature/Low voltage</td>
<td>89.0V AC @ + 75°C</td>
<td>EUT functioned properly following test procedure. No physical damage.</td>
</tr>
<tr>
<td>TS-2 1998, Section 2 para. 2.2.8.4</td>
<td>Vibration endurance test</td>
<td>0.5g @ 30Hz for 1hr on all three planes</td>
<td>EUT functioned properly following test procedure. No physical damage.</td>
</tr>
<tr>
<td>TS-2 1998, Section 2, para 2.1.10</td>
<td>Mechanical shock</td>
<td>+/-10g half sine wave for 11msec on all three planes</td>
<td>EUT functioned properly following test procedure. No physical damage.</td>
</tr>
<tr>
<td>TS-2 1992, Section 2, para. 2.1.6.1</td>
<td>Electrical transients: High repetition noise (AC terminals)</td>
<td>One +/-300VDC pulse every other cycle once every 3 seconds across 360° of line cycle (2500W peak)</td>
<td>EUT functioned properly following test procedure. No physical damage.</td>
</tr>
<tr>
<td>TS-2 1998, Section 2 para. 2.1.6.2</td>
<td>Electrical transients: Low-repetition high energy (AC terminals)</td>
<td>One +/-600VDC pulse every second, randomly distributed across 360° of line cycle. Ten pulses total.</td>
<td>EUT functioned properly following test procedure. No physical damage.</td>
</tr>
<tr>
<td>TS-2 1998, Section 2, para 2.1.7</td>
<td>Electrical transients: I/O terminals</td>
<td>One +/-300VDC pulse every second, minimum 5 pulses per port</td>
<td>EUT functioned properly following test procedure. No physical damage.</td>
</tr>
<tr>
<td>TS-2 1992, Section 2, para. 2.1.8</td>
<td>Electrical transients: Nondestruct transient immunity (AC terminals)</td>
<td>One +/-1000VDC pulse every two seconds, 3 per each polarity.</td>
<td>EUT functioned properly following test procedure. No physical damage.</td>
</tr>
</tbody>
</table>

IEC 61850-3 EMI Type Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Levels</th>
<th>RuggedCom Test Level</th>
<th>Performance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61000-4-2</td>
<td>ESD</td>
<td>+/- 4kV</td>
<td>+/- 8kV</td>
<td>B</td>
</tr>
<tr>
<td>IEC 61000-4-3</td>
<td>Radiated RFI</td>
<td>10 V/m, 80 to 1000MHz</td>
<td>20V/m</td>
<td>A</td>
</tr>
<tr>
<td>IEC 61000-4-4</td>
<td>Burst (fast transient)</td>
<td>+/- 1kV @ 5kHz</td>
<td>+/- 4kV @ 2.5kHz</td>
<td>B</td>
</tr>
<tr>
<td>IEC 61000-4-5</td>
<td>Surge</td>
<td>+/- 0.5V line-to-earth/line</td>
<td>+/- 4V line-to-earth, +/- 2kV line-to-line</td>
<td>B</td>
</tr>
<tr>
<td>IEC 61000-4-6</td>
<td>Induced (conducted) RFI</td>
<td>10V @ 0, 5-80 MHz</td>
<td>10V @ 0, 5-80 MHz</td>
<td>A</td>
</tr>
<tr>
<td>IEC 61000-4-8</td>
<td>Magnetic field</td>
<td>30 A/m² 50, 60 Hz</td>
<td>40 A/m continuous, 1000 A/m for 1 s</td>
<td>A</td>
</tr>
<tr>
<td>IEC 61000-4-11</td>
<td>Voltage dips</td>
<td>30% for 0.5 period</td>
<td>30% for 1 period</td>
<td>B</td>
</tr>
<tr>
<td>IEC 60255-5</td>
<td>Dielectric strength</td>
<td>2k V AC (Fail-safe relay output)</td>
<td>2k V AC (Fail-safe relay output)</td>
<td>N/A</td>
</tr>
<tr>
<td>IEC 60255-5</td>
<td>H.V. impulse</td>
<td>5kV (Fail-safe relay output)</td>
<td>5kV (Fail-safe relay output)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Environmental Type Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
<th>Levels</th>
<th>Severity Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 60068-2-1</td>
<td>Cold temperature</td>
<td>Test Ad</td>
<td>-40°C, 16 hours</td>
</tr>
<tr>
<td>IEC 60068-2-2</td>
<td>Dry heat</td>
<td>Test Bd</td>
<td>+85°C, 16 hours</td>
</tr>
<tr>
<td>IEC 60068-2-30</td>
<td>Humidity (damp heat, cyclic)</td>
<td>Test Db</td>
<td>95% (non-condensing), 55°C, 6 cycles</td>
</tr>
<tr>
<td>IEC 60255-21-1</td>
<td>Vibration</td>
<td>Test Fc</td>
<td>2g @ (10 - 150) Hz</td>
</tr>
<tr>
<td>IEC 60255-21-2</td>
<td>Shock</td>
<td>Test Ea</td>
<td>30g @ 11mS</td>
</tr>
</tbody>
</table>

1 Class 2 refers to “Measuring relays and protection equipment for which a very high security margin is required or where the vibration levels are very high, (e.g. shipboard application and for severe transportation conditions”).
Technical Specification

Power Supply
- Power consumption: 10W max
- 24VDC: 10-36VDC, 0.4A
- 48VDC: 36-72VDC, 0.2A
- HI voltage AC/DC: 88-300VDC, 85-264VAC, 0.1A

Critical Alarm Relay
- Form-C failsafe contact relay: 1A@30VDC

Physical Dimensions
- Height: 7.4” (188mm)
- Width: 2.6” (66mm)
- Depth: 5.0” (127mm)
- Weight: 2.7 lbs
- Ingress protection: IP40 (1mm objects)
- Enclosure: 20 AWG galvanized steel enclosure
- Mounting: DIN rail or panel mounted

Switch Properties
- Switching method: Store and forward
- Switching latency: 8 us (100Mbps)
- Switching bandwidth: 1.8 Gbps
- MAC address table size: 16bytes
- Priority queues: 4
- Frame buffer memory: 1 Mbit
- Simultaneous VLANs: 255
- VLAN ID range: 1 to 4094
- IGMP and static multicast groups: 256
- Port rate limiting: 128kbps, 256, 512, 4, 8Mbps
- No head of line blocking

Regulatory Approvals
- ISO: Designed and manufactured using a ISO9001: 2000 certified quality program
- CE marking
- Emissions: FCC Part 15 (Class A), EN55022 (CISPR22 Class A)
- Safety: cCSAus (Compliant with CSA C22.2 No. 60950, UL 60950, EN60950)
- Laser eye safety (FDA/CDRH): Complies with 21 CFR Chapter 1, Subchapter J

Network Management
- HTTPS graphical web-based, SSL (128-bit encryption)
- SNMP v1, v2c, v3 (56-bit encryption)
- Telnet, VT100, SSH/SFTP (128-bit encryption)
- Command Line Interface (CLI)
- RSA key management (1024 bit key)
- Authentication and accounting – TACACS+ (encrypted), RADIUS client, PPP

Warranty
- 5 Years – Applicable to design and manufacturing related product defects

EMI Immunity and Environmental Compliance
- IEC 61000-6-2 Industrial (Generic)
- IEC 61800-3 Industrial (Variable Speed Drive Systems)
- IEC 61850-3 Electric Utility Substations
- IEEE 1613 Electric Utility Substations
- NEMA TS 2 Traffic Control Equipment
- Hazardous Locations: Class 1, Division 2

IEEE Compliance
- 802.3-10BaseT
- 802.3u-100BaseTX, 100BaseFX
- 802.3x-Flow Control
- 802.3z-1000BaseLX
- 802.3ab-1000BaseTX
- 802.3ad-Link Aggregation
- 802.1D-MAC Bridges
- 802.1D-Spanning Tree Protocol
- 802.1p-Class of Service
- 802.1Q-VLAN Tagging
- 802.1D-2004-Rapid Spanning Tree Protocol
- 802.1x-Port Based Network Access Control
- 802.1Q-2005 (formerly 802.1s) MSTP

IETF RFC Compliance
- RFC768-UDP
- RFC783-TFTP
- RFC791-IP
- RFC792-ICMP
- RFC793-TCP
- RFC826-ARP
- RFC854-Telnet
- RFC894-IP over Ethernet
- RFC1112-IGMP v1
- RFC1519-CIDR
- RFC1541-DHCP (client)
- RFC2030-SNTP
- RFC2068-HTTP
- RFC2236-IGMP v2
- RFC2284-EAP
- RFC2475-Differentiated Services
- RFC2865-RADIUS
- RFC3414-SNMPv3-USM
- RFC3415-SNMPv3-VACM

IETF SNMP MIBS
- RFC1493-BRIDGE-MIB
- RFC1907-SNMPv2-MIB
- RFC2012-TCP-MIB
- RFC2013-UDP-MIB
- RFC2578-SNMPv2-SMI
- RFC2579-SNMPv2-TC
- RFC2819-RMON-MIB
- RFC2863-IF-MIB
- draft-ietf-bridge-rstpmib-03-BRIDGE-MIB
- draft-ietf-bridge-bridgemib-smiv2-03-RSTP-MIB
- IANAIfType-MIB
Fiber Specifications and Dimension Drawings

Fiber Optical Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fiber Port Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>Multimode</td>
</tr>
<tr>
<td>Connector</td>
<td>MTRJ, ST, SC, LC</td>
</tr>
<tr>
<td>Typical dist. (km)</td>
<td>2</td>
</tr>
<tr>
<td>Optical wavelength (nm)</td>
<td>1310</td>
</tr>
<tr>
<td>Cable size core/cladding (um)</td>
<td>50 / 125 or 62.5 / 125</td>
</tr>
<tr>
<td>TX power (min/max) (dBm)</td>
<td>-9.5 / -4</td>
</tr>
<tr>
<td>RX sensitivity (dBm)</td>
<td>-15.7</td>
</tr>
<tr>
<td>RX saturation (dBm)</td>
<td>-33.5</td>
</tr>
<tr>
<td>Typical budget (dB)</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Singlemode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>LC, SC, ST</td>
</tr>
<tr>
<td>Typical dist. (km)</td>
<td>20</td>
</tr>
<tr>
<td>Optical wavelength (nm)</td>
<td>1310</td>
</tr>
<tr>
<td>Cable size core/cladding (um)</td>
<td>8 / 125 or 9 / 125</td>
</tr>
<tr>
<td>TX power (min/max) (dBm)</td>
<td>-9 / -3</td>
</tr>
<tr>
<td>RX sensitivity (dBm)</td>
<td>-15.5</td>
</tr>
<tr>
<td>RX saturation (dBm)</td>
<td>-32</td>
</tr>
<tr>
<td>Typical budget (dB)</td>
<td>16.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Singlemode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>LC, SC, ST</td>
</tr>
<tr>
<td>Typical dist. (km)</td>
<td>50</td>
</tr>
<tr>
<td>Optical wavelength (nm)</td>
<td>1300</td>
</tr>
<tr>
<td>Cable size core/cladding (um)</td>
<td>8 / 125 or 9 / 125</td>
</tr>
<tr>
<td>TX power (min/max) (dBm)</td>
<td>-7 / -3</td>
</tr>
<tr>
<td>RX sensitivity (dBm)</td>
<td>-2.5</td>
</tr>
<tr>
<td>RX saturation (dBm)</td>
<td>-37</td>
</tr>
<tr>
<td>Typical budget (dB)</td>
<td>34.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Singlemode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>LC, SC, ST</td>
</tr>
<tr>
<td>Typical dist. (km)</td>
<td>90</td>
</tr>
<tr>
<td>Optical wavelength (nm)</td>
<td>1300</td>
</tr>
<tr>
<td>Cable size core/cladding (um)</td>
<td>8 / 125 or 9 / 125</td>
</tr>
<tr>
<td>TX power (min/max) (dBm)</td>
<td>0 / 5</td>
</tr>
<tr>
<td>RX sensitivity (dBm)</td>
<td>-2.5</td>
</tr>
<tr>
<td>RX saturation (dBm)</td>
<td>-39</td>
</tr>
<tr>
<td>Typical budget (dB)</td>
<td>41.5</td>
</tr>
</tbody>
</table>

Longer segment lengths dependent on fiber specifications. Consult factory for further details.

Overall dimensions

All dimensions are in millimeters, unless otherwise stated.
Dimension Drawings

Panel and DIN rail mount dimensions

All dimensions are in millimeters, unless otherwise stated.
Order Codes

| 6GK60910AT2 _ _ _ - 0 - _ _ _ - A - _ _ - Z _ _ + _ _ + _ _ |
| PM1 | Mount | MOD | S | E1 | E2 |

PM1: Power Module 1
1 = 24 VDC (10-36 VDC)
2 = 48 VDC (36-72 VDC)
3 = 87-264VAC or 88-300VDC

Mount: Mounting Options
A = No mounting option
B = DIN rail mounting
C = Panel mounting

MOD: Hardware Modifications
0 = None
1 = Conformal coating

S: Serial Port Options
A00 = None
A01 = RS232/422/485 DB9
A02 = 2 x RS232/422/485 RJ45
A03 = 2 x fiber 850nm ST

E1: Ethernet Ports Options
B00 = No Ethernet ports
B01 = 2 x 10/100TX RJ45
B02 = 2 x 10FL - Multimode, 850 nm, ST connectors
B03 = 2 x 100FX - Multimode, 1300 nm, ST connectors
B04 = 2 x 100FX - Multimode, 1300 nm, SC connectors
B05 = 2 x 100FX - Multimode, 1300 nm, MTRJ connectors
B06 = 2 x 100FX - Multi mode, 1300nm, LC connectors
B07 = 2 x 100FX - Singlemode, 1300 nm, ST connectors, 20km
B08 = 2 x 100FX - Singlemode, 1300 nm, SC connectors, 20km
B09 = 2 x 100FX - Singlemode, 1300 nm, LC connectors, 20km
B10 = 2 x 100FX - Singlemode, 1300 nm, SC connectors, 50km
B11 = 2 x 100FX - Singlemode, 1300 nm, LC connectors, 50km
B12 = 2 x 100FX - Singlemode, 1300 nm, SC connectors, 90km
B13 = 2 x 100FX - Singlemode, 1300 nm, LC connectors, 90km

E2: Ethernet Ports Options
C00 = No port
C01 = 1 x 100BaseTX - RJ45 connector
C02 = 1 x 100BaseFX - Multimode, MTRJ connector
C03 = 1 x 100BaseFX - Multimode, SC connector
C04 = 1 x 100BaseFX - Multimode, ST connector
C05 = 1 x 100BaseFX - Multimode, LC connector
C06 = 1 x 100BaseFX - Singlemode, ST connector, 20km
C07 = 1 x 100BaseFX - Singlemode, LC connector, 20km
C08 = 1 x 100BaseFX - Singlemode, LC connector, 50km
C09 = 1 x 100BaseFX - Singlemode, LC connector, 90km
C10 = 1 x 100BaseFX - Singlemode, SC connector, 20km
C11 = 1 x 100BaseFX - Singlemode, SC connector, 50km
C12 = 1 x 100BaseFX - Singlemode, SC connector, 90km

Example Order Codes

6G6K091-0AT21-0BA0-Z A01+B04+C06
24VDC Power Supply, DIN Rail Mount, RS232/422/485 DB9,
2 x 100FX - Multimode, 1300 nm, SC connectors,
1 x 100BaseFX - Singlemode, ST connector, 20km

6G6K091-0AT22-0CA1-Z A03+B10+C12
48VDC Power Supply, Panel Mount, Conformal Coating,
2 x Fiber 850nm ST, 2 x 100FX - Singlemode, 1300 nm,
SC connectors, 50km, 1 x 100BaseFX - Singlemode,
SC connector, 90km
The information provided in this brochure contains descriptions or characteristics of performance which in case of actual use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of contract. Availability and technical specifications are subject to change without notice.

All product designations may be trademarks or product names of Siemens AG or supplier companies whose use by third parties for their own purposes could violate the rights of the owners.