Compact form factor Ethernet switches with EoVDSL2 uplinks provide the flexibility to use legacy copper or optical infrastructure in harsh environments.

RUGGEDCOM RSL910 is a 10 port, industrially hardened, fully managed Ethernet switch with 128-bit encryption supporting 2 VDSL2 ports, 2 Gigabit Ethernet SFP ports and 6 Fast Ethernet RJ45 ports. The VDSL2 ports allow LAN segments up to 3 KM over telephone grade cable at up to 85 Mbps.

Designed to operate reliably in harsh environments, the RSL910 provides a high level of immunity to electromagnetic interference and heavy electrical surges typical of environments found in utility substations, rail applications, and oil and gas operations. An operating temperature range of -40°C to +85°C coupled with hazardous location compliance, optional conformal coating and a galvanized steel enclosure allows the RSL910 to be placed in almost any location.

The embedded Rugged Operating System (ROS) provides advanced cyber security features and comprehensive networking functions such as Enhanced Rapid Spanning Tree (eRSTP), Port Rate Limiting, and a full array of intelligent functionality for high network availability and manageability. Coupled with ruggedness and durability that is designed in from the onset, the RSL910 is ideal for creating mission critical, real-time, control applications where high reliability and availability is of paramount importance.
RUGGEDCOM RSL910
Compact Ethernet switch with EoVDSL2 uplinks
• 2 x 100/1000BASE-X SFP uplink ports
• 6 x 10/100BASE-TX device ports
• 2 x EoVDSL2 uplink ports with terminal blocks
• Integrated 24 VDC, 48 VDC or HI voltage power supply
• RS232 console port and failsafe relay output

Data Sheet:
RSL910
User Guide:
RSL910
Installation Guide:
RSL910

Published by
Siemens Industry, Inc.
5300 Triangle Parkway
Norcross, GA 30092

Unrestricted

For more information, please contact our Customer Support Center.
Phone: 1-800-241-4453
E-mail: info.us@siemens.com
usa.siemens.com/ruggedcom
©2017 Siemens Industry, Inc.

The technical data presented in this document is based on an actual case or on as-designed parameters, and therefore should not be relied upon for any specific application and does not constitute a performance guarantee for any projects. Actual results are dependent on variable conditions. Accordingly, Siemens does not make representations, warranties, or assurances as to the accuracy, currency or completeness of the content contained herein. If requested, we will provide specific technical data or specifications with respect to any customer’s particular applications. Our company is constantly involved in engineering and development. For that reason, we reserve the right to modify, at any time, the technology and product specifications contained herein.